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Abstract

Deep learning and Bayesian machine learning are currently two of the most
active areas of machine learning research. Deep learning provides a powerful
class of models and an easy framework for learning that now provides state-of-
the-art methods for applications ranging from image classification to speech
recognition. Bayesian reasoning provides a powerful approach for information
integration, inference and decision making that has established it as the key
tool for data-efficient learning, uncertainty quantification and robust model
composition that is widely used in applications ranging from information
retrieval to large-scale ranking. Each of these research areas has shortcomings
that can be effectively addressed by the other, pointing towards a needed
convergence of these two areas of machine learning; the complementary
aspects of these two research areas is the focus of this talk. Using the tools of
auto-encoders and latent variable models, we shall discuss some of the ways in
which our machine learning practice is enhanced by combining deep learning
with Bayesian reasoning. This is an essential, and ongoing, convergence that
will only continue to accelerate and provides some of the most exciting
prospects, some of which we shall discuss, for contemporary machine learning
research.
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A framework for constructing flexible

models

+ Rich non-linear models for - Only point estimates

classification and sequence prediction. .
- Hard

+ Scalable learning using stochastic mode]

| to score models, do

|l selection and

approximations and conceptually simple. comp.

+ Easily composable with other gradient-
based methods

exity penalisation.
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Bayesian Reasoning

A framework for inference and decision making

+ Unified framework for model building, - Mainly conjugate and linear
inference, prediction and decision making models

+ Explicit accounting for uncertainty and - Potentially intractable
variability of outcomes inference leading to

expensive computation or

+ Robust to overfitting; tools for model . .
long simulation times.

selection and composition.
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Two Streams of Machine Learning

+ Rich non-linear models for
classification and sequence
prediction.

+ Scalable learning using stochastic
approximation and conceptually
simple.

+ Easily composable with other
gradient-based methods

- Only point estimates

- Hard to score models, do selection
and complexity penalisation.

N Bayesian Reasoning

- Mainly conjugate and linear
models

- Potentially intractable inference,
computationally expensive or long
simulation time.

+ Unified framework for model
building, inference, prediction and
decision making

+ Explicit accounting for uncertainty
and variability of outcomes

+ Robust to overfitting; tools for
model selection and composition.
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Outline

Complementary strengths that we should
expect to be successfully combined.

G Why is this a good idea?
* Review of deep learning
¢ Limitations of maximum likelihood and MAP estimation

e How can we achieve this convergence?
» Case study using auto-encoders and latent variable models

* Approximate Bayesian inference

e What else can we do?

¢ Semi-supervised learning, classification, better inference
and more.
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A (Statistical) Review of Deep Learning

[ ~

Generalised Linear RegI'ESSiOll Target R.egression Link- Inv li.nk Activation
Real Linear Identity Identity
77 — WTX —|— b Binary Logistic Logit logﬁ Signxoid Sigmoid
Binary Probit Inv Gauss (13:;}5)95_“) CDF Probit
— . CDF 0~ '(n)  @(n)
p (y‘x) o p (y|g (77)7 6) Binary Gumbel Compl. " Gu?rnbel CDF
log-log e ¢
. . . log(—lo
4 The basic function can be any linear sy togsic 0 Hyperbolic Tk
function, e.g., affine, convolution. oy
. . . . , Categorical Multinomial Multin. Logit Softmax
4 g(.) is an inverse link function that we’ll iy
. . . Counts Poisson log(p) exp(v)
refer to as an activation function. Counts  Poisson /() v
Non-neg. Gamma Reciprocal :7 %
Sparse Tobit max max(0;v) ReLU
Ordered Ordinal Cum. Logit
L g o(dr —n)

Maximum likelihood estimation
Optimise the negative log-likelihood

L = —logp(ylg(n);0)
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A (Statistical) Review of Deep Learning

Recursive Generalised Linear Regression

4 Recursively compose the basic linear functions.
4 Gives a deep neural network.

Ely] = hp o...0h;ohy(x)

Building block:
linear predictor or layer

non-linear, parametric models

Problem: Overfitting of MLE leading to limited generalisation.
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A (Statistical) Review of Deep Learning

Regularisation Strategies for Deep Networks
4 Regularisation is essential to overcome the limitations of maximum
likelihood estimation.
4 Regularisation, penalised regression, shrinkage.
4+ A wide range of available regularisation techniques:

» Large data sets
» Input noise/jittering and data augmentation/expansion.

» L2 /L1 regularisation (Weight decay, Gaussian prior)
» Binary or Gaussian Dropout
» Batch normalisation

More robust loss function

Bayesian Reasoning and Deep Learning



More Robust Learning

MAP estimators and limitations fxy (z|y)

4 Power of MAP estimators is that they provide
some robustness to overfitting.

4+ Creates sensitivities to parameterisation.

N =)

=~
—

1. Sensitivities affect gradients and can make learning hard

Invariant MAP estimators and exploiting natural

9,

gradients, trust region methods and other " l =
improved optimisation. |- S8

o,

2. Still no way to measure confidence of our model.

. - Comglete clement space -
Q0000000000000 0000000000 IYMIIYIINRMYS

Can generate frequentist confidence intervals
and bootstrap estimates.
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Towards Bayesian Reasoning

Proposed solutions have not fully dealt with the underlying issues.

Issues arise as a consequence of:
» Reasoning only about the most likely solution and

» Not maintaining knowledge of the underlying variability (and
averaging over this).

Given this powerful model class and invaluable tools for
regularisation and optimisation, let us develop a

Pragmatic Bayesian Approach for

Probabilistic Reasoning in Deep Networks.

Bayesian reasoning over some, but not all parts of our models (yet).
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Outline

Complementary strengths that we should
expect to be successfully combined.

e How can we achieve this convergence?
» Case study using auto-encoders and latent variable models
¢ Approximate Bayesian inference
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Dimensionality Reduction and Auto-encoders

2 z=)

Unsupervised learning and auto-encoders

» A generic tool for dimensionality
reduction and feature extraction.

» Minimise reconstruction error using an

encoder and a decoder. Decoder
, , L , 8(-) /()
+ Non-linear dimensionality reduction
using deep networks for encoder and
decoder. *
+ Easy to implement as a single |
computational graph and train using v = g(z)
SGD Data y
N~ —

- No natural handling of missing data

L= —logp Z
- No representation of variability of the 8p(ulg! );
representation space. L=ly—g(fw)l5
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Dimensionality Reduction and Auto-encoders

Some questions about auto-encoders:
»What is the model we are interested in?

»Why use an encoder? Decoder
8(.) /)

v

y* = g(z)

» How do we regularise?

Data y

Best to be explicit about the:

e Probabilistic model of interest and
e Mechanism we use for inference.
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Density Estimation and Latent Variable Models

Latent variable models:
» Generic and flexible model class for density estimation.

» Specifies a generative process that gives rise to the data.
Latent Gaussian Models:

» Probabilistic PCA, Factor analysis (FA), Bayesian Exponential
Family PCA (BXPCA).

Latent Variable @ @

z ~ N (z|p, 3) X

Observation Model

n=Wz-+b /@

y ~ Expon(y|n) @’

Exponential fam natural parameters n. n=1 N

~ Use our knowledge of deep learning to design even richer models.
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Deep Generative Models

Rich extension of previous model using deep neural networks.

E.g., non-linear factor analysis, non-linear Gaussian belief
networks, deep latent Gaussian models (DLGM).

2 Latent Variables (Stochastic layers)

z; ~ N(zi|fi(z141), 20)
fi(z) = c(Wh(z) + b)

O
il
(2

Deterministic layers
h;(x) = oc(Ax + c)
Observation Model

n=Wh; +b
y ~ Expon(y[n)

Can also use non-exponential family.
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Deep Latent Gaussian Models

Our inferential tasks are:

I

2. Make predictions:

p(y*|y) = / p(y* |2, W)p(zly, W)dz

3. Choose the best model

ply|W) = / o2, W)p(2)dz
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Variational Inference

Use tools from approximate inference to handle intractable integrals.

 Reconstruction cost:
Expected log-likelihood
measures how well
samples from g(z) are able
to explain the data y.

KL[q(z|y)|p(z]y)] Approximation class

True posterior

A

 Penalty: Explanation of
the data g(z) doesn’t deviate
too far from your beliefs
p(z) - Okham’s razor.

F(y,q) =|E

~ Penalty is derived from your model and does not need to be designed. k‘ﬁ
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Amortised Variational Inference

;~q&/w.

Approx. Posterior Penalty

Approximate posterior distribution g(z): Best match Encoder
to true posterior p(z|y), one of the unknown q(z 1)
inferential quantities of interest to us.

Inference network: g is an encoder or inverse model.

Parameters of g are now a set of global parameters

used for inference of all data points - test and train.

Amortise (spread) the cost of inference over all data.

Encoders provide an eflicient mechanism for

amortised posterior inference
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Auto-encoders and Inference in DGMs

Z z2~q(zly)
—————

Approx. Posterior Penalty ¢

- Model (Decoder): likelihood p(y|z). 1;4(;"/12' Network
q(zly)
- Inference (Encoder): variational distribution g(z|y)
Stochastic encoder-decoder systems *
implement variational inference. y~p(ylz) _
Data y

Specific combination of variational inference in latent
variable models using inference networks

But don’t forget what your model is, and what inference you use.
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What Have we Gained

+ Transformed an auto-encoders into more

interesting deep generative models. F(y:) = Eq(s)llogp(y]2)] = KL[a(2)p(=)]
+ Rich new class of density estimators built oz z~qzly)
with non-linear models. ‘
+ Used a principled approach for deriving
loss functions that automatically include
appropriate penalty functions. 1;/?;/121 Network
+ Explained how an encoder enters into 9(z1y)
our models and why this is a good idea.
+ Able to answer all our desired inferential ¢
questions. y~p(y]2) >
. . Data y
+ Knowledge of the uncertainty associated -

with our latent variables.
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What Have we Gained

F(y,q) = Ey llogp(yl2)] — KL[q(2)]lp(2) + Able to score our models and do model
. i~a(z]y) selection using the free energy.
‘ - | + Can impute missing data under any
missingness assumption
+ Can still combine with natural gradient
Model Network and improved optimisation tools.
p(ylz) a(z1y) . . .
+ Easy implementation - have a single
computational graph and simple Monte
* Carlo gradient estimators.
y~p(y!2) —— + Computational complexity the same as
Data y any large-scale deep learning system.

A true marriage of Bayesian Reasoning and Deep Learning
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Data Visualisation

MNIST Handwritten digits

IS LonN|(L
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W

Samples from 2D latent model Labels in 2D latent space
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Visualising MNIST in 3D
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Missing Data Imputation

Original Data unobserved pixels Inferred Image

10%
observed

50%
observed
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Outline

Complementary strengths that we should
expect to be successfully combined.

e What else can we do?

¢ Semi-supervised learning, recurrent networks, classification,
better inference and more.
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Semi-supervised Learning

Can extend the marriage of Bayesian reasoning and deep learning to the
problem of semi-supervised classification.

Semi-supervised DLGM
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Generative Models with Attention

We can also combine other tools from deep learning to design
even more powerful generative models: recurrent networks

and attention.

P(z|z) Ct—1—| write |—C¢—|write | = ... =~ |=P(z|21.7) n.m
T A [
ecoder ecoder \

encoder t=1 RNN RNN
FNN \ t i

1 3 read d
I I I
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Uncertainty on Model Parameters

We can also combine other tools from deep learning to design even more
powerful generative models: recurrent networks and attention.
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In Review ...

Deep learning as a framework for building highly =z _ s <t \";\“”;_ -
' . ' N\ —— \.z"‘?o(;mm&ol
flexible non-linear parametric models, but e s R N\ TR
regularisation and accounting for uncertainty TS AN
o (4 con\i,:l?mon \ sul - ling con\ifliuon 2x2 \ OO fully
and lack of knowledge is still needed. Naglipipalr IR
o)

V4 . .
£LL— Bayesian reasoning as a general framework for

N\
/ inference that allows us to account for
/ uncertainty and a principled approach for

regularisation and model scoring.

z z2~q(zly)

Combined Bayesian reasoning with auto-encoders and "
. o o oce Network
showed just how much can be gained by a marriage of these CC s
two streams of machine learning research. ]
y~p(ylz) ——]
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Thanks to many people:

Danilo Rezende, Ivo Danihelka, Karol Gregor, Charles Blundell,
Theophane Weber, Andriy Mnih, Daan Wierstra (Google DeepMind),

Durk Kingma, Max Welling (U. Amsterdam)

Thank You.
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Probabilistic Deep Learning
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What is a Variational Method?

" Variational Principle
General family of methods for approximating :
complicated densities by a simpler class of densities.

Approximation class

True posterior

Deterministic approximation procedures
with bounds on probabilities of interest.

Fit the variational parameters.
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From IS to Variational Inference

Integral problem

T p<yz>.q<z>dz
- . p(2)
logp(y) > | q(2)log | p(yl2)—= | dz

log. / p()g(a)ds > / p(z) log g(z)da q (Z)
q(2)

— [ a2 o5 p(sl) — [ atz)10g L7

p(2)

Variational lower bound
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Minimum Description Length (MDL)

Hypothesis code

Stochastic encoder Data code-length

Stochastic encoder-decoder systems implement variational inference.

Z Z2~q(zly)

Regularity in our data that can be explained with | o -
latent variables, implies that the data is compressible. ¢ |

MDL: inference seen as a problem of compression —
we must find the ideal shortest message of our data y: Decoder Encoder

. R | !
marginal likelihood. p(ylz) q(z 1)

Must introduce an approximation to the ideal

message. ¢

Encoder: variational distribution g(z|y), YD)
ata y

Decoder: likelihood p(y|z).
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Denoising Auto-encoders (DAE)

Stochastic encoder Reconstruction

Stochastic encoder-decoder systems implement variational inference.

. : : Z z~q(zly)
- DAE: A mechanism for finding representations or | * o :

features of data (i.e. latent variable explanations).

- Encoder: variational distribution g(z|y),
Decoder Encoder

-+ Decoder: likelihood p(y|2). PO ) 1)

The variational approach requires you to be explicit ¢

—
about your assumptions. Penalty is derived from your y~py12)
model and does not need to be designed.
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Amortising the Cost of Inference

Repeat:
E-step \ \ |
§ For i=1,..N

| 90 o Voo, o llog po(ynlzn)] = VoK Lig(zn)llp(za)] |

Instead of solving this optimisation

for every data point n, we can
instead use a model.

M-step

1
0 o N ; Vo log pe(Yn|2n)

. z~qzly) Inference network: g is an encoder or inverse model.
* Parameters of g are now a set of global parameters
used for inference of all data points - test and train.
Model Network Share the cost of inference (amortise) over all data.
p(ylz) : : : .
a0 hy) Combines easily with mini-batches and Monte Carlo
* expectations.
Can jointly optimise variational and model
y~py17) parameters: no need for alternating optimisation.
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Implementing your Variational Algorithm

Avoid deriving pages of gradient updates for variational inference.

. . . . Eq[(—logp(y|z) +logq(z) — logp(z)]
Varlatlonal 1nference turns 1ntegrat10n

Into optlmlsatlon: Forward pass Backward pass

Vo

o« Automated Tools: S— HIa(2)]
< q(z

Differentiation: Theano, Torch7, Stan

Message passing: infer NET log p(2)
Inference
q(z Ix) Inference
Model q(z Ix)
» Stochastic gradient descent and plxI2)
1t] Imisati Model

other preconditioned optimisation. * Mode é

e Same code can run on both GPUs o Yo b

or on distributed clusters.

e Probabilistic models are modular,

can easily be combined. Ideally want probabilistic programming
using variational inference.

Bayesian Reasoning and Deep Learning


http://infer.NET

Stochastic Backpropagation

A Monte Carlo method that works with continuous latent variables.

VeEy()[f(2)

ZNN(:U7O-2)
z=p+oe e~N(0,1)

A
with Monte Carlo 43]\/(0,1) [vﬁz{u,a}f(,u + 0'6)]

- Can use any likelihood function, avoids the need for additional lower bounds.

- Low-variance, unbiased estimator of the gradient.
- Can use just one sample tfrom the base distribution.

- Possible for many distributions with location-scale or other known
transtformations, such as the CDF.
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Monte Carlo Control Variate Estimators

More general Monte Carlo approach that can be used with both discrete
or continuous latent variables.

Vege(z|x)
qs (2|)

Property of the score function: V ¢ log qe ( z‘ x) —

s () 108 po(y|2) Vg log q(z]y)]

MCCV Estimate

VgEq, (2 log pe(y|2)]

<1:qu(zz) [(lnge (y|2) o C)V¢ lOg Q(Z‘y)]

c is known as a control variate and is used
to control the variance of the estimator.
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Mehta, Schwab (2014) - An exact mapping between the variational
renormalization group and deep learning



Renormalisation in physics
Boltzmann machines
Renormalisation for RBMs
Roundup

Overview

1 Renormalisation in physics
Outline
Variational renormalisation
1D Ising spin model

2 Boltzmann machines
General framework
Restricted Boltzmann machines
Training an RBM

3 Renormalisation for RBMs
Stacking RBMs
Stacked RBMs implement variational RG
Numerical experiment

4 Roundup
Summary
Conclusions and implications

Lars Haringa Variational renormalisation for stacked Boltzmann machines



m In 1954, coupling parameter g in quantum electrodynamics
was found to satisfy

g(p)=G"1 ((%)d G(g(M))) for p, M scales



m In 1954, coupling parameter g in quantum electrodynamics
was found to satisfy

g(p)=G"1 ((%)d G(g(M))) for p, M scales

m Group equation



Outline
Variational renormalisation
1D lIsing spin model

Renormalisation group

m In 1954, coupling parameter g in quantum electrodynamics
was found to satisfy

g(p)=G1 ((%)d G(g(M))) for p, M scales

m Group equation

m Describes interactions at different scales: coupling changes,
but system remains self-similar



Renormalisation in physics
Boltzmann machines
Renormalisation for RBMs
Roundup

Outline
Variational renormalisation
1D lIsing spin model

Renormalisation group

m In 1954, coupling parameter g in quantum electrodynamics
was found to satisfy

g(p)=G"1 ((Auﬂ)d G (g(M))) for p, M scales

m Group equation

m Describes interactions at different scales: coupling changes,
but system remains self-similar

m Important tool in modern physics (quantum, particle, string),
and Nobel prizes have been awarded
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Renormalisation in physics
Boltzmann machines
Renormalisation for RBMs
Roundup

Outline
Variational renormalisation
1D lIsing spin model

Renormalisation group

m In 1954, coupling parameter g in quantum electrodynamics
was found to satisfy

g(p)=G"1 ((Auﬂ)d G (g(M))> for p, M scales

m Group equation

m Describes interactions at different scales: coupling changes,
but system remains self-similar

m Important tool in modern physics (quantum, particle, string),
and Nobel prizes have been awarded

m Intuition: micro to macro, but math is abstract

Lars Haringa Variational renormalisation for stacked Boltzmann machines
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Kadanoff et alii for spin models
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Variational renormalisation
1D lIsing spin model
Variational renormalisation

m Variational renormalisation group introduced in 1976 by
Kadanoff et alii for spin models

m Block spin renormalisation

m N spins {v;}i—1, . n can take binary values &1

m For configuration v, system has energy (Hamiltonian)

H(v) = — Z Kivi + Z Kijvivj + Z Kijkvivivic + ..
i iij ijk
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Outline
Variational renormalisation
1D lIsing spin model

Variational renormalisation

m Variational renormalisation group introduced in 1976 by
Kadanoff et alii for spin models

Block spin renormalisation
N spins {v;};=1,.n can take binary values +1
For configuration v, system has energy (Hamiltonian)

H(V) = - Z Kivi + Z KijViVj + Z K,-%,-,kv;vjvk + ...
i i ijk

Probability of configuration v given by Boltzmann distribution
p(v) = e_;(v) with partition function Z = 3=, e H(")
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Variational renormalisation

m Variational renormalisation group introduced in 1976 by
Kadanoff et alii for spin models

Block spin renormalisation

N spins {v;};=1,.n can take binary values +1

For configuration v, system has energy (Hamiltonian)

H(V) = - Z Kivi + Z KijViVj + Z K,-%,-,kv;vjvk + ...
i i ijk

Probability of configuration v given by Boltzmann distribution
p(v) = e_;(v) with partition function Z = 3=, e H(")

Free energy F¥ = —log Z
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Variational renormalisation

m Variational renormalisation group introduced in 1976 by
Kadanoff et alii for spin models

m Block spin renormalisation

m N spins {v;}i—1,. . n can take binary values +1

m For configuration v, system has energy (Hamiltonian)

H(V) == ZKIVI + ZKijViVj +ZK,"J',/<V;VJ'V/( + ...
i ij

ijk

m Probability of configuration v given by Boltzmann distribution
p(v) = e_;(v) with partition function Z = 3=, e H(")

m Free energy FV = —logZ

m Goal: coarse-grained description with conservation of energy

Lars Haringa Variational renormalisation for stacked Boltzmann machines
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m Goal: coarse-grained description with conservation of energy



Outline
Variational renormalisation
1D lIsing spin model

Variational renormalisation

m For configuration v, system has Hamiltonian

H(v) = ZKVI+ZKUV"/J+ZKUkVI‘/JVk+

i,k

m Goal: coarse-grained description with conservation of energy
m Introduce ‘hidden’ spins {h;};—1, . m with M < N
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Variational renormalisation

m For configuration v, system has Hamiltonian

ZKV, + ZK,JV,VJ +ZKUkv,vjvk + ..

ij,k

m Goal: coarse-grained description with conservation of energy
m Introduce ‘hidden’ spins {h;};—1, . m with M < N
m Describe system using hidden spins h and Hamiltonian

ZKh +ZKUhh + Y Kijchibjhi + .

iJ,k
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Variational renormalisation

For configuration v, system has Hamiltonian

ZKV, + ZK,JV,VJ +ZKUkv,vjvk + ..

ij,k

Goal: coarse-grained description with conservation of energy
Introduce ‘hidden’ spins {h;}j—1.. v with M < N
Describe system using hidden spins h and Hamiltonian

ZKh +ZKUhh + Y Kijchibjhi + .

iJ,k

m Find RG mapping {K} — {K}, in terms of A, with F¥ = F
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m Find RG mapping {K} — {K}, in terms of )\, with FV = F]
m Mapping will depend on unknown parameters A
m Also on v, but: marginalise out (average over observations)

m Energy conservation often not exact; optimise F/{’ — FY with A
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Variational renormalisation

Find RG mapping {K} — {R} in terms of A\, with FV = F/{'

Mapping will depend on unknown parameters A

]

]

m Also on v, but: marginalise out (average over observations)

m Energy conservation often not exact; optimise F/{’ — FY with A
]

In that case, RG typically not invertible, so in fact a semigroup
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1D Ising spin model
m Spins {v;} inline with spacing a; nearest neighbour coupling J°
Hamiltonian of system is H(v) = —J° Doiig1 Vivitl

]
m Coupling favours spins that agree

m Skip over every other spin, so that spacing is 2a; solve for J?
]

lterating RG turns out to satisfy tanh(J"1) = tanh?(J")
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1D Ising spin model

Spins {v;} inline with spacing a; nearest neighbour coupling J°
Hamiltonian of system is H(v) = —J° Diiv1 Vivit

Coupling favours spins that agree

Skip over every other spin, so that spacing is 2a; solve for J?
lterating RG turns out to satisfy tanh(J"+1) = tanh?(J")
Higher order coupling iterations represent ‘effective’ behaviour
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1D Ising spin model

Spins {v;} inline with spacing a; nearest neighbour coupling J°
Hamiltonian of system is H(v) = —J° Diiv1 Vivit

Coupling favours spins that agree

Skip over every other spin, so that spacing is 2a; solve for J?
lterating RG turns out to satisfy tanh(J"+1) = tanh?(J")
Higher order coupling iterations represent ‘effective’ behaviour

Exact solution, conserves energy, gives large-scale behaviour
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1D Ising spin model

Spins {v;} inline with spacing a; nearest neighbour coupling J°
Hamiltonian of system is H(v) = —J° Diiv1 Vivit

Coupling favours spins that agree

Skip over every other spin, so that spacing is 2a; solve for J?
lterating RG turns out to satisfy tanh(J"+1) = tanh?(J")
Higher order coupling iterations represent ‘effective’ behaviour

Exact solution, conserves energy, gives large-scale behaviour

Shortcoming: averaging discards half of the spins
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m RBM visible layer: input; no intra-layer connections
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Boltzmann machine

m General framework for neural computation
m Lossy compression

m Binary, but extendible to multinomial and also real-valued
Boltzmann Restricted
Machine Boltzmann
,d"_'v._.'——."“'a\ Machine
Hidden () () *"*( " Y B
b 4 SN b

AN

anWa P a o
visble () ()OO OO

w a - - - W W

—

m RBM visible layer: input; no intra-layer connections
m RBM hidden layer: feature detectors; no intra-layer
connections
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Boltzmann machine

m General framework for neural computation
m Lossy compression
m Binary, but extendible to multinomial and also real-valued

Boltzmann Restricted

Machine Boltzmann

Machine
Hidden ( O ( ) == ( D ) ene
- ' ! . A 4 W/

Yy N e N P
Visible L J;I_( yC ) ) () ) o

w u - W W e

—

m RBM visible layer: input; no intra-layer connections

m RBM hidden layer: feature detectors; no intra-layer
connections

m Layers are fully connected to each other
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m Unsupervised (e.g. contrastive divergence or reconstruction)

m Model is stochastic: learns with what probability to turn a
hidden node to 4+1 or —1 given some input
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Restricted Boltzmann machine

Boltzmann Restricted
Machine Boltzmann
Machine
Hidden I_/' s .'/- ™ aes I_,' 'x‘l R R 4 g I./_*\I
- A L. A 4 A
- Y YT N aYayarnya)
Visible I\___..’l I'\___.*'I I'\. /I I'u__ /'I - I'\__/" I'\. ./I I'\_ ,/I

m Unsupervised (e.g. contrastive divergence or reconstruction)

m Model is stochastic: learns with what probability to turn a
hidden node to +1 or —1 given some input

m Learns probability distribution over its nodes by storing biases
and weights related to the connections between nodes
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m Bias a; goes with visible node v;, b; with h;, and matrix entry
wj;j with the connection between v; and h;
m Central: energy (Hopfield 1982)

E(v,h) = — (Z; aivi+ 3. bihj + 32 ; WijVihj)
m Boltzmann probability of configuration/state/observation v

1 —E(v,h
)= 5 et
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Restricted Boltzmann machine

m Bias a; goes with visible node v;, b; with h;, and matrix entry
wj; with the connection between v; and h;
m Central: energy (Hopfield 1982)

E(v,h) = - (Z; aivi+ > bihi + 3 WijVihj)

m Boltzmann probability of configuration/state/observation v
1 —E(v,h)
-7 de
h

m Partition function Z=3_ , e~ E(v;h) sum over all possible
configurations— intractable (Long and Servedio, 2010)
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m Bias a; goes with visible node v;, b; with h;, and matrix entry
wj; with the connection between v; and h;

m Central: energy (Hopfield 1982)
E(v,h)=— (Z; ajvi + > bihj + 32 WijVihj>

m Boltzmann probability of configuration/state/observation v
1 —E(v,h)
-7 de
h

m Partition function Z=3_ , e~ E(v;h) sum over all possible
configurations— intractable (Long and Servedio, 2010)

m No intra-layer connections: probability of hidden neuron given
visible layer is easy (independent of other hidden neurons)
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m Bias a; goes with visible node v;, b; with h;, and matrix entry
wj; with the connection between v; and h;
m Central: energy (Hopfield 1982)

E(v,h) = - (Z; aivi+ > bihi + 3 WijVihj>

m Boltzmann probability of configuration/state/observation v
1 —E(v,h)
-7 de
h

m Partition function Z=3_ , e~ E(v;h) sum over all possible
configurations— intractable (Long and Servedio, 2010)

m No intra-layer connections: probability of hidden neuron given
visible layer is easy (independent of other hidden neurons)

m Probability of visible neuron given hidden layer just as well
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Restricted Boltzmann machine

m Bias a; goes with visible node v;, b; with h;, and matrix entry
wj; with the connection between v; and h;
m Central: energy (Hopfield 1982)

E(v,h) = - (Z; aivi+ > bihi + 3 WijVihj>

m Boltzmann probability of configuration/state/observation v
1 —E(v,h)
-7 de
h

m Partition function Z=3_ , e~ E(v;h) sum over all possible
configurations— intractable (Long and Servedio, 2010)

m No intra-layer connections: probability of hidden neuron given
visible layer is easy (independent of other hidden neurons)

m Probability of visible neuron given hidden layer just as well

m_Model is stochastic, but p(v | h) and p(h | v) are easy
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m RBMs learn a distribution over the training set

m Boltzmann probabilities are assigned by the machine and are
trained to fit the data

m How to do classification?

m Different suggestions by Hinton (2012)

(a) Use hidden layer to train normal classifier (arguably most
important)
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Classification with an RBM

m RBMs learn a distribution over the training set

m Boltzmann probabilities are assigned by the machine and are
trained to fit the data

m How to do classification?

m Different suggestions by Hinton (2012)

(a) Use hidden layer to train normal classifier (arguably most
important)

(b) Train an RBM for each class and use class-specific free energy
and (ML-approximation of) partition function in a softmax
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Classification with an RBM

m RBMs learn a distribution over the training set

m Boltzmann probabilities are assigned by the machine and are
trained to fit the data

m How to do classification?
m Different suggestions by Hinton (2012)
(a) Use hidden layer to train normal classifier (arguably most
important)
(b) Train an RBM for each class and use class-specific free energy
and (ML-approximation of) partition function in a softmax
(c) Include label in visible layer during training, so that RBM learns
the probability of a class, and then evaluate joint probabilities
for a test vector with each of the classes—comparison is easy
because partition function is the same
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m Tune bias vectors a and b and weight matrix w
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Training an RBM

m Recall energy E(v, h) = — (Z, ajv; + Zj bjh; + ZI-J W,'J'V,'hj)
Training is maximising joint probability of training set

Joint probability is product of probabilities of observations
Tune bias vectors a and b and weight matrix w

Gradient ascent using individual probability for each
observation
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m Partition function Z =3, , e E(v:h)



Recall energy E(v,h) = — (Z, aivi + > bihj + 37 W,'jV,'hj)
Probability of observation v is p(v) = 1 3, e=E(v:h)
Partition function Z = 3, , e E(v:h)

Maximise individual (Iog—)probablllty by gradient ascent with
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Training an RBM

m Recall energy E(v, h) = — (Z, aivi+ 3 ; bihi+ 32, W,'jV,'hj)
m Probability of observation v is p(v) = £ 3=, e E(v:h)

m Partition function Z =3, , e E(v:h)

m Maximise individual (log- )probablllty by gradient ascent with

6|ng(V) o Iogz —E(v,h) _ 0 |0gZ

ow;j 5WU 5W,-j
B Zh e_E(v’h)V,'hJ' B ZV,h e*E(V,h)‘*/'ihj
- Zh e—E(v,h) 2‘7 \ e—E(7,h)

= E[vihj | v] = E[vihj]
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Training an RBM

Recall energy E(v, h) = — (Z, aivi+ > bihj + 32, ; wivih

m Probability of observation v is p(v) = 3 3=, e E(v:h)
m Partition function Z =3, e E(v:h)
m Maximise individual (Iog )probablllty by gradient ascent with
dlog p(v) b
| — < —logZ
(5W,J (SW,J ng WU o8
_2he My gne FONGh
Zh e—E(v,h) Son e—E(7,h)

= E[vihj | v] - E[vihj]

m Expectations under model distribution with current weights
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Training an RBM

Recall energy E(v, h) = — (Z, aivi+ > bihj + 32, ; wivih

m Probability of observation v is p(v) = 3 3=, e E(v:h)
m Partition function Z =3, e E(v:h)
m Maximise individual (Iog )probablllty by gradient ascent with
dlog p(v) b
| — < —logZ
(5W,J (SW,J ng WU o8
_2he My gne FONGh
Zh e—E(v,h) Son e—E(7,h)

= E[vihj | v] - E[vihj]

m Expectations under model distribution with current weights
m Can gradient be computed?
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Training an RBM

Goal: find gradient ‘HLP(V) = E|[vih; | v] — E[vihj]

Model is stochastic

Conditional on v, the hidden activations are independent and
readily computed

Given v, hidden activation h; is 1 with probability

. 1
p(hi|vi)=0 (bj + z,: v,'W,'j) with o(x) = [
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Training an RBM

Goal: find gradient ‘SILP(V) = E|[vih; | v] — E[vihj]

Model is stochastic

Conditional on v, the hidden activations are independent and
readily computed

Given v, hidden activation h; is 1 with probability
p(hj | vi)=0c | bj+ Z viw; | with o(x) = _1
j )j i ij 1+ex

m This follows from the Boltzmann distribution
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Training an RBM

m Goal: find gradient M = E[vih; | v] — E[vihj]
J
m Model is stochastic

m Conditional on v, the hidden activations are independent and
readily computed

m Given v, hidden activation h; is 1 with probability

1

m This follows from the Boltzmann distribution
m So an unbiased estimate of E [v;h; | v] is easy
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Training an RBM

m Goal: find gradient M = E[vih; | v] — E[vihj]
J
m Model is stochastic

m Conditional on v, the hidden activations are independent and
readily computed

m Given v, hidden activation h; is 1 with probability

1

m This follows from the Boltzmann distribution
m So an unbiased estimate of E [v;h; | v] is easy
m But what about E [v;h;]?
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m Computing unconditional E [v;hj] is much harder

m Option: Gibbs sampling, since p(v | h) and p(h | v) are easy
m Both are logistic sigmoids

m Start with random v, sample h, sample v, sample h, repeat...
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Training an RBM

Goal: find gradient ‘mg—pj = E[vihj | v] — E[v;hj]

m Computing unconditional E [v;hj] is much harder

m Option: Gibbs sampling, since p(v | h) and p(h | v) are easy
m Both are logistic sigmoids

m Start with random v, sample h, sample v, sample h, repeat...

m After a ‘while’, both v and h follow joint (unconditional)
distribution
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Training an RBM

Goal: find gradient M = E[vjh; | v] — E[vihj]

]

m Computing uncondltlonal E [vihj] is much harder

m Option: Gibbs sampling, since p(v | h) and p(h | v) are easy

m Both are logistic sigmoids

m Start with random v, sample h, sample v, sample h, repeat...

m After a ‘'while’, both v and h follow joint (unconditional)
distribution

This could take a while
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m Gibbs sampling is expensive
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Training an RBM

Goal: find gradient ‘”%g—vz(v) = E[v;h; | v] — E[v;hj]
Conditional E[v;h; | v] is easy, unconditional E [v;h;] is harder
Gibbs sampling is expensive

Faster: start with training vector v, sample h, reconstruct v/

Use v/h; to approximate E[v;hj]



General framework
Restricted Boltzmann machines
Training an RBM

Training an RBM

m Goal: find gradient ‘“‘;g—vfj(v) = E[vihj | v] — E[vih]]
Conditional E[v;h; | v] is easy, unconditional E [v;h;] is harder

Gibbs sampling is expensive

]
]
m Faster: start with training vector v, sample h, reconstruct v/
m Use v/h; to approximate E[v;hj]

]

Looks like Contrastive Divergence, but not quite
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Training an RBM

m Goal: find gradient % = E[vih; | v] — E[vihj]
Conditional E[v;h; | v] is easy, unconditional E [v;h;] is harder
Gibbs sampling is expensive

Faster: start with training vector v, sample h, reconstruct v/
Use v/h; to approximate E[v;hj]

Looks like Contrastive Divergence, but not quite

Works better if alternated a couple of times
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m To summarise RBM training, let € be learning rate
m Update weights with Awj; = ¢ (é [vihj | v] — E [v,-hj])

m Sample E[v;h; | v] from input v and one-time stochastic
activation h

m Sample E [v;h;] from reconstruction v/ of v via h
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Training an RBM

m To summarise RBM training, let £ be learning rate

m Update weights with Awj; = ¢ (E [vihj | v] — E [v,-hj]>

m Sample E [v;h; | v] from input v and one-time stochastic
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m To summarise RBM training, let £ be learning rate

m Update weights with Awj; = ¢ (E [vihj | v] — E [v,-hj]>

m Sample E [v;h; | v] from input v and one-time stochastic
activation h

m Sample E [v;h;] from reconstruction v/ of v via h

m Obtain Awj;j = e (vjhj — v/hj)

m Biologically plausible (7)
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Training an RBM

To summarise RBM training, let € be learning rate

Update weights with Aw;; = ¢ (ﬁ [vihj | v] — E [v,-hj]>
Sample E[v;h; | v] from input v and one-time stochastic
activation h

Sample E [v;h;] from reconstruction v/ of v via h

Obtain Aw;j = e (vjhj — v/hj)

Biologically plausible (?)

Does not approximate gradient, but works well (Hinton 2012)

Bias vectors a and b are updated similarly
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m Reducing dimensionality: lossy compression
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Renormalisation of stacked RBM

Recall energy E(v, h) = — (E, aivi+ > bihi+3,; W,-J-v,-hj>
RBMs use hidden neurons h to model data in visible neurons v
Less h; than v;

RG vyields transformation of energy in terms of h only: E(h)
Equivalent to the way the Hamiltonian is rewritten in physics

At the same time, Boltzmann probabilities of hidden layer may
be marginalised over the visible layer, yielding an energy
function defined by marginal probabilities p(h)

m Mehta and Schwab show that both energies are the same

m This means that stacked RBM feature extraction employs RG

m Understanding how stacked RBMs synthesise features gives
insight in why and when they work

Lars Haringa Variational renormalisation for stacked Boltzmann machines
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To see this in action: 2D Ising model

Training set of spins with Hamiltonian H(v) = —J3_; » viv;

Dimensionality 1600 — 400 — 100 — 25

]
]

m Nearest neighbours only (i, j)

]

m Appears to learn Kadanoff block spin renormalisation by itself
]

Stacked RBM learns spatiality without imposing it



Renormalisation in physics
Boltzmann machines
Renormalisation for RBMs
Roundup

Stacking RBMs
Stacked RBMs implement variational RG
Numerical experiment

Numerical experiment
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Summary

m RG is an abstract, powerful technique from statistical physics
m Kadanoff's block spin renormalisation works for binary
configurations

m Stacked RBMs, which learn a distribution without supervision,
automatically implement this renormalisation

m Theoretical insight may bring clarification about why deep
learning recognises features so well
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Conclusions and implications

Interesting perspective
Perhaps statistical physics will yield more insight into DL

|

|

m Physics are typically very symmetric, while data is not

m Relevant: critical temperature to operate near phase transition
|

No breakthrough follow-up yet
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Introduction

v

Method focused on computational optimization and
implementation details

Based on well-known MLPs and ConvNets

v

v

Reduces memory usage

Reduces number of instructions

v



How? Binarization

» Weights and activations are constrained to have values either
—1lor+1

» Binarization function x® = Sign(x)

» Multiplications replaced with 1-bit XNOR operations



Gradients and noise

Although the weights are binary, the gradient is real-valued.
» SGD makes small and noisy steps to explore the space of
parameters
> noise is averaged out by the stochastic gradient contributions

> noise to weights and activations when computing the gradient
can can act as regularization

» Binarization, being a form of quantization, adds noise



Propagating Gradients Trough Discretization

Problem
The derivative of g = Sign(r) is always 0

Solution: Straight-Trough Gradient Estimator (Hinton)

> estimator gg = g—g is assumed to be obtained

» straight-trough estimator g, = ar = gqlir<1

the derivative 1,/<; can be seen as propagating the gradient
trough hard tanh, that is:

Htanh(x) = Clip(x, —1,+1) = max(—1, min(1, x)) (1)



A few helpful ingredients

» Reduction of the impact of the weights' scale achieved by:

1. Batch normalization (that also accelerates the training)
2. ADAM learning rule

Observations

» Augmenting the number of hidden units can compensate for
the discretization noise
> BinaryNet is faster to train than BinaryConnect but leads to
worse results.
» Maybe it's overfitting and might benefit from additional noise



Experiments: MLP on MNIST

v

3 hidden layers with 4096 binary units
L2-SVM output layer
Model regularization with Dropout

ADAM

Exponentially decaying global learning rate

v

v

v

v



Experiments: ConvNet

On CIFAR-10

» No preprocessing

» Square hinge loss

» ADAM

» Exponentially decaying learning rate

» Batch normalization (minibatch size: 50)
> Validation set: last 5000 samples

» Amount of epochs: 500

On SVHN

» Configuration like on CIFAR-10
» Amount of epochs: 200
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Performance improvement via XNOR-accumulate

By using GPU:
» SIMD: Single Instruction, Multiple Data

» SWAR: SIMD In A Register:

» Concatenates groups of 32 binary variable in a 32-bit register
» This way, 32 connections evaluated with only 4 instructions:
a1+ =popcount(not(xor(ad??, wy)))



GPU Execution Times
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Related works

Binary Connect

>

binary weights

Some activations quantizations

slower to train

worse on MNIST

better on CIFAR-10

good with fully connected networks, not good with ConvNets

Hwang & Sung, 2014; Kim, 2014

v

v

v

Network is trained with high precision
Afterwards, the weights are ternarized —H,0, +H
re-training with ternary weights and 3-bit activations

good for fully connected networks, not good with ConvNets



Future works

» Binarization of the gradients

» Benchmark results to other models (e.g. RNN) and datasets



