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Do we need generative modeling?
High probabilityof the blue label.=Highly probabledecision!

High probabilityof the blue label.
xLow probabilityof the object.=Uncertaindecision!

new data



Generative Modeling
● Providing decision is not enough. How to evaluate uncertainty? Distribution of y is only a part of the story.
● Generalization problem. Without knowing the distribution of x how we can generalize to new data?
● Understanding the problem is crucial (“What I cannot create, I do not understand”, Richard P. Feynman). Properly modeling data is essential to make better decisions.



Generative Modeling
● Semi-supervised learning.Use unlabeled data to train a better classifier.



Generative Modeling
● Handling missing or distorted data.Reconstruct and/or denoise data.



Generative ModelingImage generation

Real Generated
CHEN, Xi, et al. Variational lossy autoencoder. arXiv preprint arXiv:1611.02731, 2016.



Generative Modeling
Sequence generation

Generated

BOWMAN, Samuel R., et al. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.



How to formulate a generative model?Modeling in a high-dimensional space is difficult.
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How to formulate a generative model?Modeling in a high-dimensional space is difficult. → modeling all dependencies among pixels.

A possible solution? → Models with latent variables
very inefficient!
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Boltzmann distribution
A joint distribution of random variables:

It is called the Boltzmann (or Gibbs) distribution.
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Advantages:– Joint distribution is described by E(x).– Well-studied distribution in statistical physics.



Boltzmann distribution
A joint distribution of random variables:

Advantages:– Joint distribution is described by E(x).– Well-studied distribution in statistical physics.Drawbacks:– Calculation of partition function requires enumeration of all x, e.g., if x’s are binary →    combinations.



Boltzmann MachinesLet us consider the following energy function:
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second-order term(models correlations) first-order term(models “prior”)Very complicated…Can we do better? Latent variables!



Restricted Boltzmann MachinesLet us consider the following energy function:
where x and h are binary.



Restricted Boltzmann MachinesLet us consider the following energy function:
where x and h are binary.

image
hidden unitsweights (receptive field)



Restricted Boltzmann MachinesConditional dependencies:

where





RBM: TrainingWe train RBMs using the log-likelihood function:
where



RBM: TrainingWe train RBMs using the log-likelihood function:
where Free energy

softplus



RBM: TrainingLet us calculate gradient of the LL wrt parameters:



RBM: TrainingLet us calculate gradient of the LL wrt parameters:

easy difficultIt requires application of an approximate inference (e.g., MCMC). 



RBM: Contrastive Divergence
Apply k steps of Gibbs sampler and approximate the gradient as follows:

Hinton, G. E. (2002), Training products of experts by minimizing contrastive divergence, Neural Computation, 14(8), 1771-1800



RBM with Gaussian inputs



Subspace RBM

Tomczak, J. M., & Gonczarek, A. (2017). Learning invariant features using Subspace Restricted Boltzmann Machine. Neural Processing Letters, 45(1), 173-182.



Deep Belief Network



Deep Boltzmann Machines



Training DBM



Latent Variable Models
● Latent variable model:
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Latent Variable Models
● Latent variable model:
● If and , then → Factor Analysis.  
● What if we take a non-linear transformation of z? → an infinite mixture of Gaussians. Neural network



Deep Generative Models (DGM):Density Network

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface.Oxford University Press, Oxford, 129-144.
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Neural Network

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface.Oxford University Press, Oxford, 129-144.



DGM: Density Network
Neural NetworkHow to train this model?!

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface.Oxford University Press, Oxford, 129-144.



DGM: Density Network
● MC approximation:

where:
MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface.Oxford University Press, Oxford, 129-144.



DGM: Density Network
● MC approximation:

where:
MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface.Oxford University Press, Oxford, 129-144.

Sample z many times,apply log-sum-exp trick and maximize log-likelihood.



DGM: Density Network
● MC approximation:

where:
MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface.Oxford University Press, Oxford, 129-144.

Sample z many times,apply log-sum-exp trick and maximize log-likelihood.It scales badly in high dimensional cases!



DGM: Density Network

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface.Oxford University Press, Oxford, 129-144.
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CONSRequires explicit modelsFails in high dim. cases



DGM: Density Network

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface.Oxford University Press, Oxford, 129-144.

PROSLog-likelihood approachEasy samplingTraining using gradient-basedmethods
CONSRequires explicit modelsFails in high dim. cases

Can we do better?
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DGM: so far we have
Works only for low dim. cases...
Works for high dim. cases!Doesn’t train a distribution...
Inefficient training...

Unstable training...
Density NetworkDensity Network

Generative Adversarial Net



DGM: so far we have
QUESTIONCan we stick to the log-likelihood approachbut with a simple training procedure?Density NetworkDensity Network

Generative Adversarial Net



DGM: so far we have

Generative Adversarial Net

Density Network



DGM: Variational Auto-Encoder
Density Network

Generative Adversarial Net
Variational Auto-Encoder

Kingma, D. P., & Welling, M. (2013). Auto-encoding Variational Bayes. arXiv preprint arXiv:1312.6114.



DGM: Variational Auto-Encoder
Density Network

Generative Adversarial Net
Variational Auto-Encoder

Encoder Decoder

Kingma, D. P., & Welling, M. (2013). Auto-encoding Variational Bayes. arXiv preprint arXiv:1312.6114.
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DGM: Variational Auto-Encoder
Variational posterior



DGM: Variational Auto-Encoder

Reconstruction error Regularization



DGM: Variational Auto-Encoder
Our objective it the evidence lower bound.
We can approximate it using MC sample.



DGM: Variational Auto-Encoder
Our objective it the evidence lower bound.
We can approximate it using MC sample.
How to properly calculate gradients (i.e., train the model)?



DGM: Variational Auto-Encoder
PROBLEM: calculating gradient wrt parametersof the variational posterior (i.e., sampling process).

Kingma, D. P., & Welling, M. (2013). Auto-encoding Variational Bayes. arXiv preprint arXiv:1312.6114.



DGM: Variational Auto-Encoder
PROBLEM: calculating gradient wrt parametersof the variational posterior (i.e., sampling process).SOLUTION: use a non-centered parameterization(a.k.a. reparameterization trick).

Kingma, D. P., & Welling, M. (2013). Auto-encoding Variational Bayes. arXiv preprint arXiv:1312.6114.



DGM: Variational Auto-Encoder
PROBLEM: calculating gradient wrt parametersof the variational posterior (i.e., sampling process).SOLUTION: use a non-centered parameterization(a.k.a. reparameterization trick).

Output of a neural network
Kingma, D. P., & Welling, M. (2013). Auto-encoding Variational Bayes. arXiv preprint arXiv:1312.6114.



DGM: Variational Auto-Encoder



DGM: Variational Auto-Encoder
A deep neural net that outputs parametersof the variational posterior (encoder):



DGM: Variational Auto-Encoder
A deep neural net that outputs parametersof the generator (decoder), e.g., a normal distribution or Bernoulli distribution.



DGM: Variational Auto-Encoder
A prior that regularizes the encoder andtakes part in the generative process.
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Feedforward netsConvolutional netsPixelCNNGated PixelCNN
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DGM: Variational Auto-Encoder
Normalizing flowsVolume-preserving flowsGaussian processesStein Particle DescentOperator VI

Feedforward netsConvolutional netsPixelCNNGated PixelCNN
Auto-regressive PriorObjective PriorStick-Breaking PriorVampPriorImportance Weighted AERenyi DivergenceStein Divergence



DGM: VAE
PROSLog-likelihood frameworkEasy samplingTraining using gradient-basedmethodsStable trainingDiscovers latent representationCould be easily combined withother probabilistic frameworks

CONSOnly explicit modelsProduces blurry images(?)



In order to make betterdecisions, we need abetter understandingof reality.=generative modeling



Web-page:https://jmtomczak.github.io
Code on github:https://github.com/jmtomczak
Contact:J.M.Tomczak@uva.nljakubmkt@gmail.com

Part of the presented research was funded by the European Commission within the Marie Skłodowska-Curie Individual Fellowship (Grant No. 702666, ''Deep learning and Bayesian inference for medical imaging'').

https://github.com/jmtomczak
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