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Lecture 13: Deep Reinforcement Learning
Deep Learning @ UvA
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o General purpose framework for learning Artificial Intelligence models

o RL assumes that the agent (our model) can take actions

o These actions affect the environment where the agent operates, more 
specifically the state of the environment and the state of the agent

o Given the state of the environment and the agent, an action taken from 
the agent causes a reward (can be positive or negative)

o Goal: the goal of an RL agent is to learn how to take actions that maximize 
future rewards

What is Reinforcement Learning?
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Some examples of RL
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o Controlling physical systems
◦ Robot walking, jumping, driving

o Logistics
◦ Scheduling, bandwidth allocation

o Games
◦ Atari, Go, Chess, Pacman

o Learning sequential algorithms
◦ Attention, memory

Some examples of RL
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Reinforcement Learning: An abstraction

Dynamic System
(“The World”)

Learning Agent
(“Our Model”)

Action 
𝑎𝑡

State
𝑠𝑡

Reward 
𝑟𝑡

Slides inspired by P. Abbeel
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o We model them as functions

o The policy function at = 𝜋(𝑠𝑡) selects an action given the current state

o The value function 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) is the expected total reward that we will 
receive if we take action 𝑎𝑡 given state 𝑠𝑡

o What should our goal then be?

How do we decide about actions, states, rewards?
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o We model them as functions

o The policy function at = 𝜋(𝑠𝑡) selects an action given the current state

o The value function 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) is the expected total reward that we will 
receive if we take action 𝑎𝑡 given state 𝑠𝑡

o What should our goal then be?

𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼(𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ |𝑠𝑡 , 𝑎𝑡)

o Learn to take actions 𝑎𝑡 that maximize the value function for different 
states

How do we decide about actions, states, rewards?
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o Policy-based
◦ Learn directly the optimal policy 𝜋∗

◦ The policy 𝜋∗ obtains the maximum future reward

o Value-based
◦ Learn the optimal value function 𝑄∗(𝑠, 𝑎)

◦ This value function applies for any policy

o Model-based
◦ Build a model for the environment

◦ Plan and decide using that model

o Pros and cons?

Approaches to Reinforcement Learning
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o How can we rewrite the value function in more compact form
𝑄𝜋 𝑠𝑡, 𝑎𝑡 = 𝔼 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ 𝑠𝑡, 𝑎𝑡 =?

Bellman equation
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o How can we rewrite the value function in more compact form
𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ 𝑠𝑡 , 𝑎𝑡

= 𝔼𝑠′ 𝑟 + 𝛾𝑄𝜋(𝑠′, 𝑎′) 𝑠𝑡 , 𝑎𝑡

o This is the Bellman equation

o How can we rewrite the optimal value function 𝑄∗ 𝑠𝑡 , 𝑎𝑡 ?

Bellman equation
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o How can we rewrite the value function in more compact form
𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ 𝑠𝑡 , 𝑎𝑡

= 𝔼𝑠′ 𝑟 + 𝛾𝑄𝜋(𝑠′, 𝑎′) 𝑠𝑡 , 𝑎𝑡

o This is the Bellman equation

o How can we rewrite the optimal value function 𝑄∗ 𝑠, 𝑎 ?

𝑄∗ 𝑠, 𝑎 = 𝔼𝑠′ 𝑟 + 𝛾max
𝑎′

𝑄∗(𝑠′, 𝑎′) 𝑠, 𝑎

Bellman equation
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o In the simplest case the value function 𝑄(𝑠, 𝑎) is a table

o In the beginning of the learning the function 𝑄(𝑠, 𝑎) is incorrect

o Still, to the limit value iteration algorithms solve the Bellman equation

𝑄𝑖+1 𝑠, 𝑎 = 𝔼𝑠′ 𝑟 + 𝛾max
𝑎′

𝑄𝑖(𝑠
′, 𝑎′) 𝑠, 𝑎

Q-Learning
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o Computing the 𝑄-value is often too expensive
◦ Hard to solve argmax

𝛼
𝑄𝜃(𝑠, 𝑎)

◦ Especially when having continuous or high-dimensional action spaces

o Often defining the policy 𝜋𝜃(𝑢|𝑠) is easier than defining the 𝑄-function

o Use a non-linear function approximator to model the action value 
function

𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

o Our deep network can be such a non-linear function approximator
optimize the 𝜋𝜃(𝑢|𝑠)

Policy Optimization
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Deep Reinforcement 
Learning
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How to make RL deep?
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How to make RL deep?
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o Rewards 𝑟𝑡 at time 𝑡

o Actions 𝜋 taken according to a policy 𝜋 = P(𝑎|𝑠)

o Again, the action-value function
𝑄 𝑠, 𝑎 = max

𝜋
𝔼[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 +⋯ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋]

where 𝛾 is a discount factor of the future rewards
◦ Future rewards should not be as important, because we do not know the future

o Use a non-linear function approximator to model the action value 
function

𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Deep Reinforcement Learning
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Policy optimization

Dynamic System

Learning Agent

ActionState Reward

𝜋𝜃(𝑢|𝑠)

𝑢
ℎ

𝑥
Slides inspired by P. Abbeel
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Policy optimization

Dynamic System

Learning Agent

ActionState Reward

𝜋𝜃(𝑎|𝑠)

𝑎
ℎ

𝑥

Slides inspired by P. Abbeel

o Train learning agent for the optimal 
policy 𝜋𝜃(𝑎|𝑠) given states 𝑠 and 
possible actions 𝑎

o The policy class can be either 
deterministic or stochastic
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o Non-linear function approximator: Deep Networks

o Input is as raw as possible, e.g. image frame
◦ Or perhaps several frames (When needed?)

o Output is the best possible action out of a set of actions for maximizing 
future reward

o Important: no need anymore to compute the actual value of the action-
value function and take the maximum: argmax

𝛼
𝑄𝜃(𝑠, 𝑎)

◦ The network returns directly the optimal action

Deep Reinforcement Learning
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o The objective is the mean squared-error in Q-values

ℒ 𝜃 = 𝔼[ 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝜃 − 𝑄 𝑠, 𝑎, 𝜃
2
]

o The Q-Learning gradient then becomes

𝜕ℒ

𝜕𝜃
= 𝔼[ 𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′, 𝜃 − 𝑄 𝑠, 𝑎, 𝜃

𝜕𝑄(𝑠, 𝑎, 𝜃)

𝜕𝜃
]

o Optimize end-to-end with SGD

How to optimize?

target
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1. Do a feedforward pass for the current state s to get predicted Q-values 
for all actions

2. Do a feedforward pass for the next state s’ and calculate maximum 
overall network outputs max

a′
𝑄 𝑠′, 𝑎′, 𝜃

3. Set Q-value target for action to r + γmax
a′

𝑄 𝑠′, 𝑎′, 𝜃 (use the max 

calculated in step 2). For all other actions, set the Q-value target to the 
same as originally returned from step 1, making the error 0 for those 
outputs

4. Update the weights using backpropagation.

In practice
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Stability in Deep 
Reinforcement 
Learning
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o Naively, Q-Learning oscillates or diverges with neural networks

o Why?

Stability problems
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o Naively, Q-Learning oscillates or diverges with neural networks

o Why?

o Sequential data breaks i.i.d. assumption
◦ Highly correlated samples break SGD

o However, this is not specific to RL, as we have seen earlier

Stability problems
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o Naively, Q-Learning oscillates or diverges with neural networks

o Why?

Stability problems
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o The learning objective is

ℒ 𝜃 = 𝔼[ 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝜃 − 𝑄 𝑠, 𝑎, 𝜃
2
]

o The target depends on the 𝑄 function also. This means that if we update 
the current 𝑄 function with backprop, the target will also change

o Plus, we know neural networks are highly non-convex

o Policy changes will change fast even with slight changes in the 𝑄 function
◦ Policy might oscillate

◦ Distribution of data might move from one extreme to another

Stability problems
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o Naively, Q-Learning oscillates or diverges with neural networks

o Why?

Stability problems
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o Not easy to control the scale of the 𝑄 values gradients are unstable 𝑄

o Remember, the 𝑄 function is the output of a neural network

o There is no guarantee that the outputs will lie in a certain range
◦ Unless care is taken

o Naïve 𝑄 gradients can be too large, or too small  generally unstable and 
unreliable

o Where else did we observe a similar behavior?

Stability problems
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o Replay memory/Experience replay

o Store memories < 𝑠, 𝑎, 𝑟, 𝑠′ >

o Train using random stored memories instead of the latest memory 
transition

o Breaks the temporal dependencies – SGD works well if samples are 
roughly independent

o Learn from all past policies

Improving stability: Experience replay
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o Take action 𝑎𝑡 according to 𝜀-greedy policy

o Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in replay memory 𝐷

o Sample random mini-batch of transitions (𝑠, 𝑎, 𝑟, 𝑠′) from 𝐷

o Optimize mean squared error using the mini-batch

ℒ 𝜃 = 𝔼 𝑠,𝑎,𝑟,𝑠′ ~𝐷[ 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝜃 − 𝑄 𝑠, 𝑎, 𝜃
2
]

o Effectively, update your network using random past inputs (experience), 
not the ones the agent currently sees

Experience replay
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o Instead of having “moving” targets, have two networks
◦ One Q-Learning and one Q-Target networks

o Copy the 𝑄 network parameters to the target network every 𝐾 iterations
◦ Otherwise, keep the old parameters between iterations

◦ The targets come from another (Q-Target) network with slightly older parameters

o Optimize the mean squared error as before, only now the targets are 
defined by the “older” 𝑄 function

ℒ 𝜃 = 𝔼[ 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝜃𝑜𝑙𝑑 − 𝑄 𝑠, 𝑎, 𝜃
2
]

o Avoids oscillations

Improving stability: Freeze target 𝑄 network
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o Clip rewards to be in the range [−1,+1]

o Or normalize them to lie in a certain, stable range

o Can’t tell the difference between large and small rewards

Improving stability: Take care of rewards
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Results



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    EXOTIC DEEP LEARNING - 36

o Skipping frames
◦ Saves time and computation

◦ Anyways, from one frame to the other there is often very little difference

o 𝜀-greedy behavioral policy with annealed temperature during training
◦ Select random action (instead of optimal) with probability 𝜀

◦ In the beginning of training our model is bad, no reason to trust the “optimal” action

o Alternatively: Exploration vs exploitation
◦ early stages ≡ strong exploration

◦ late stages ≡ strong exploitation

Some extra tricks
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Examples of Deep 
Reinforcement 
Learning
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Deep Reinforcement Learning in Atari
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o At least 1010
48

possible game states
◦ Chess has 10120

o Monte Carlo Tree Search used mostly
◦ Start with random moves and evaluate

how often they lead to victory

◦ Learn the value function to predict the quality
of a move

◦ Exploration-exploitation trade-off

AlphaGo

Tic-Tac-Toe possible game states
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o AlphaGo relies on a tree procedure for search

o AlphaGo relies on ConvNets to guide the tree search

o A ConvNet trained to predict human moves achieved
57% accuracy

◦ Humans make intuitive moves instead of thinking too far ahead

o For Deep RL we don’t want to predict human moves
◦ Instead, we want the agent to learn the optimal moves

o Two policy networks (one per side) + One value network

o Value network trained on 30 million positions while policy networks play

AlphaGo
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o Both humans and Deep RL agents play better end games
◦ Maybe a fundamental cause?

o In the end the value of a state is computed
equally from Monte Carlo simulation and the value 
network output

◦ Combining intuitive play and thinking ahead

o Where is the catch?

AlphaGo
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o Both humans and Deep RL agents play better end games
◦ Maybe a fundamental cause?

o In the end the value of a state is computed
equally from Monte Carlo simulation and the value 
network output

◦ Combining intuitive play and thinking ahead

o Where is the catch?

o State is not the pixels but positions

o Also, the game states and actions are highly discrete

AlphaGo
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o Hardest of the Atari games

o Why is it so hard?

Montezuma’s Revenge
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o Hardest of the Atari games

o Why is it so hard?

o Very long-term dependencies
◦ Must search in multiple rooms to find the “secret”

o Future rewards are too delayed
◦ It takes a while to evaluate an action was good or not

◦ Hard to optimize

o FeUdal Networks for Hierarchical
Reinforcement Learning, A. Vezhnevets

Montezuma’s Revenge
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o Dr. O. Vinyals in DeepMind tries to bring Starcraft II and Deep RL together
◦ There is a Machine Learning API from Blizzard

◦ There is a dataset of anonymized game replays

◦ An open source python toolkit from DeepMind

◦ And there is a paper

o More info
◦ https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-

environment/

◦ https://www.youtube.com/watch?v=-fKUyT14G-8

o What are the possible difficulties?

Starcraft II

https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-environment/
https://www.youtube.com/watch?v=-fKUyT14G-8
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Summary

o Reinforcement Learning

o Q-Learning

o Deep Q-Learning

o Making Deep Q-Learning stable

o Examples of Deep Q-Learning


