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What is Reinforcement Learning?

o General purpose framework for learning Artificial Intelligence models
o RL assumes that the agent (our model) can take actions

o These actions affect the environment where the agent operates, more
specifically the state of the environment and the state of the agent

o Given the state of the environment and the agent, an action taken from
the agent causes a reward (can be positive or negative)

o Goal: the goal of an RL agent is to learn how to take actions that maximize
future rewards

s
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Some examples of RL

o Controlling physical systems
> Robot walking, jumping, driving

o Logistics
> Scheduling, bandwidth allocation

o Games
o Atari, Go, Chess, Pacman

o Learning sequential algorithms
> Attention, memory
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Reinforcement Learning: An abstraction
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How do we decide about actions, states, rewards?

o We model them as functions
o The policy function a; = m(s;) selects an action given the current state

o The value function Q™ (s, a;) is the expected total reward that we will
receive if we take action a; given state s;

o What should our goal then be?
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How do we decide about actions, states, rewards?

o We model them as functions
o The policy function a; = m(s;) selects an action given the current state

o The value function Q™ (s, a;) is the expected total reward that we will
receive if we take action a; given state s;

o What should our goal then be?

Q" (sp, ar) = E(Tpqq + YT + Vzrt+3 + -+ [sg, ap)

o Learn to take actions a; that maximize the value function for different
states
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Approaches to Reinforcement Learning

o Policy-based
o Learn directly the optimal policy *
> The policy ™™ obtains the maximum future reward

o Value-based
° Learn the optimal value function Q*(s, a)
> This value function applies for any policy

o Model-based

o Build a model for the environment
° Plan and decide using that model

o Pros and cons?
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o How can we rewrite the value function in more compact form
T — 2 —
Q" (st ar) = E(reqq + Vg + ¥V 143 + o0 Isp, ap) =7
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Bellman equation

o How can we rewrite the value function in more compact form
Q" (st,ar) = E(Tpyq + ¥1eyz + ¥V T3 + ISt ap)
!/
= Eg, (r +yQ" (s, a)lsy, ar)

o This is the Bellman equation

o How can we rewrite the optimal value function Q*(s¢, a;)?
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Bellman equation

o How can we rewrite the value function in more compact form
Q" (st,ar) = E(Tpyq + ¥1eyz + ¥V T3 + ISt ap)
!/
= Eg, (r +yQ" (s, a)lsy, ar)

o This is the Bellman equation

o How can we rewrite the optimal value function Q*(s,a)?
Q*(s,a) = E,, (r + ymax Q*(s’, a')‘s, a)
al
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Q-Learning

o In the simplest case the value function Q(s, a) is a table
o In the beginning of the learning the function Q(s, a) is incorrect

o Still, to the limit value iteration algorithms solve the Bellman equation
Qi+1(s,a) = Eq, (r + ymax Q;(s’, a’)‘s, a)
al’l
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Policy Optimization

o Computing the Q-value is often too expensive
> Hard to solve arg max Qg (s, a)
a

o Especially when having continuous or high-dimensional action spaces
o Often defining the policy mg (u|s) is easier than defining the Q-function

o Use a non-linear function approximator to model the action value
function

Q*(s,a) = Q(s,a;0)

o Our deep network can be such a non-linear function approximator
optimize the mgy(u|s)
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How to make RL deep?

Q-value Q-value 1 Q-value 2 Q-value n
Network Network
State Action State
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Deep Reinforcement Learning

o Rewards 1y attime t
o Actions 7 taken according to a policy T = P(als)
o Again, the action-value function
Q(s,a) = max E[r, + y1e41 + V2Te4p + 0 |Se = 5,0, = a, 7]
T

where Yy is a discount factor of the future rewards
o Future rewards should not be as important, because we do not know the future

o Use a non-linear function approximator to model the action value
function

Q*(s,a) = Q(s,a;0)
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Policy optimization
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Policy optimization

Dynamic System |«

o Train learning agent for the optimal

. : policy mg (als) given states s and
@ate @@ @@ possible actions a
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Deep Reinforcement Learning

o Non-linear function approximator: Deep Networks

o Inputis as raw as possible, e.g. image frame
o Or perhaps several frames (When needed?)

o Output is the best possible action out of a set of actions for maximizing
future reward

o Important: no need anymore to compute the actual value of the action-
value function and take the maximum: arg max Qg (s, a)
a

> The network returns directly the optimal action
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How to optimize?

o The objective is the mean squared-error in Q-values
£(6) = E[(r +ymaxQ(s',a’,0) — Q(s, a,0))°]
a
\

J

|

target

o The Q-Learning gradient then becomes

0L 0Q(s,a,0)

5 = E[(r +ymaxQ(s',a’,0) — Q(s,a,0)) —

o Optimize end-to-end with SGD
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In practice

1. Do a feedforward pass for the current state s to get predicted Q-values
for all actions

2. Do afeedforward pass for the next state s” and calculate maximum
overall network outputs max Q(s’,a’, 8)
a’
3. Set Q-value target for action tor + ymax Q(s’,a’, 8) (use the max

a’
calculated in step 2). For all other actions, set the Q-value target to the
same as originally returned from step 1, making the error O for those

outputs

4. Update the weights using backpropagation.
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Stability in Deep
Reinforcement
Learning
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o Naively, Q-Learning oscillates or diverges with neural networks
o Why?
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Stability problems

o Naively, Q-Learning oscillates or diverges with neural networks
o Why?

o Sequential data breaks i.i.d. assumption
> Highly correlated samples break SGD

o However, this is not specific to RL, as we have seen earlier
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o Naively, Q-Learning oscillates or diverges with neural networks
o Why?
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Stability problems

o The learning objective is
£(6) = E[(r +ymaxQ(s',a’,0) = Q(s,a, 0))’]
a

o The target depends on the Q function also. This means that if we update
the current Q function with backprop, the target will also change

o Plus, we know neural networks are highly non-convex

o Policy changes will change fast even with slight changes in the Q function
> Policy might oscillate
o Distribution of data might move from one extreme to another
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o Naively, Q-Learning oscillates or diverges with neural networks
o Why?

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES EXOTIC DEEP LEARNING - 29




Stability problems

o Not easy to control the scale of the Q values—> gradients are unstable Q
o Remember, the Q function is the output of a neural network

o There is no guarantee that the outputs will lie in a certain range
o Unless care is taken

o Naive Q gradients can be too large, or too small = generally unstable and
unreliable

o Where else did we observe a similar behavior?

s
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Improving stability: Experience replay

o Replay memory/Experience replay

o Store memories < s,a,r,s’ >

o Train using random stored memories instead of the latest memory
transition

o Breaks the temporal dependencies — SGD works well if samples are
roughly independent

o Learn from all past policies

s
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Experience replay

o Take action a; according to e-greedy policy

o Store transition (S¢, A¢, 441, S¢41) in replay memory D

o Sample random mini-batch of transitions (s, a,r,s’) from D
o Optimize mean squared error using the mini-batch

£(8) = E(sas)-pl(r + ¥ maxQ(s',a’, 6) = Q(s,a,6))"]

o Effectively, update your network using random past inputs (experience),
not the ones the agent currently sees

s
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Improving stability: Freeze target  network

o Instead of having “moving” targets, have two networks
° One Q-Learning and one Q-Target networks

o Copy the Q network parameters to the target network every K iterations
o Otherwise, keep the old parameters between iterations
> The targets come from another (Q-Target) network with slightly older parameters

o Optimize the mean squared error as before, only now the targets are
defined by the “older” Q function

£(6) = E[(r +y max Q(s',a’, 6o1a) — Q(s,2,60))’]

o Avoids oscillations

s
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Improving stability: Take care of rewards

o Clip rewards to be in the range [—1, +1]
o Or normalize them to lie in a certain, stable range

o Can’t tell the difference between large and small rewards

s
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Results

Q-learning | Q-learning | Q-learning | Q-learning

+ Replay + Replay

+ Target Q + Target Q

Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089

s
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Some extra tricks

o Skipping frames
° Saves time and computation
o Anyways, from one frame to the other there is often very little difference

o &-greedy behavioral policy with annealed temperature during training
> Select random action (instead of optimal) with probability €

|II

° In the beginning of training our model is bad, no reason to trust the “optimal” action

o Alternatively: Exploration vs exploitation
o early stages = strong exploration
° |ate stages = strong exploitation
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AlphaGo

R 1E
o At least 101°* possible game states O .
o Chess has 10129 o S *l°|z;;:°|z {;L;fo"ﬁ/fi'fail'S':
' linn o fisscisoSGaogaG:
o Monte Carlo Tree Search used mostly At o o
> Start with random moves and evaluate A Baueouasnuesciniican fou:
how often they lead to victory NIA ponoionciyoen[ooogcsjoo:
> Learn the value function to predict the quality — o0 o5 CER CER o BLE R

of a move ! L a.i:l axl':ixxﬁzx'h

o Exploration-exploitation trade-off TH

Tic-Tac-Toe possible game states
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AlphaGo

Policy network Value network

o AlphaGo relies on a tree procedure for search

P, @ |s) vy (s)

<>

o AlphaGo relies on ConvNets to guide the tree search

o A ConvNet trained to predict human moves achieved "&!‘ w
57% accuracy .

> Humans make intuitive moves instead of thinking too far ahead’ 0
o For Deep RL we don’t want to predict human moves . ¢

° Instead, we want the agent to learn the optimal moves

o Two policy networks (one per side) + One value network

o Value network trained on 30 million positions while policy networks play
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Policy network Value network
o Both humans and Deep RL agents play better end games |
> Maybe a fundamental cause? B 8 el
o In the end the value of a state is computed JC = w

equally from Monte Carlo simulation and the value
network output
o Combining intuitive play and thinking ahead

o Where is the catch?

> &
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AlphaGo

Policy network Value network

o Both humans and Deep RL agents play better end games |
> Maybe a fundamental cause? ok 810 e

@ ' -
H

& &

o In the end the value of a state is computed L.e
equally from Monte Carlo simulation and the value
network output

o Combining intuitive play and thinking ahead

o Where is the catch?

o State is not the pixels but positions

o Also, the game states and actions are highly discrete
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o Hardest of the Atar
o Why is it so hard?
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m
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Montezuma’s Revenge

o Hardest of the Atari games
o Why is it so hard?

o Very long-term dependencies
o Must search in multiple rooms to find the “secret”

o Future rewards are too delayed
° |t takes a while to evaluate an action was good or n
° Hard to optimize

o FeUdal Networks for Hierarchical
Reinforcement Learning, A. Vezhnevets
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Starcraft Il

o Dr. O. Vinyals in DeepMind tries to bring Starcraft |l and Deep RL together
° There is a Machine Learning APl from Blizzard
° There is a dataset of anonymized game replays
> An open source python toolkit from DeepMind
> And there is a paper

o More info

o https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-
environment/

o https://www.youtube.com/watch?v=-fKUyT14G-8

o What are the possible difficulties?
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o Reinforcement Learning

o Q-Learning

Summary

Deep Q-Learning
Making Deep Q-Learning stable

o Examples of Deep Q-Learning
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