
Lecture 2: Learning with neural networks
Deep Learning @ UvA
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o Machine Learning Paradigm for Neural Networks

o The Backpropagation algorithm for learning with a neural network

o Neural Networks as modular architectures

o Various Neural Network modules

o How to implement and check your very own module

Lecture Overview
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The Machine 
Learning Paradigm
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o Collect annotated data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “forward propagation”

o Evaluate predictions

Forward computations
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𝜗
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Backward computations
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o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”

o Evaluate predictions Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

= 1
𝜗

ℒ( )

(𝑦𝑖 − ෝ𝑦𝑖)
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Backward computations
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o Collect gradient data

o Define model and initialize randomly
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Backward computations
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o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”
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Backward computations
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o Collect gradient data
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Backward computations
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o As with many model, we optimize our neural network with Gradient Descent
𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

o The most important component in this formulation is the gradient

o Backpropagation to the rescue
◦ The backward computations of network return the gradients

◦ How to make the backward computations

Optimization through Gradient Descent
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Backpropagation
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o A family of parametric, non-linear and hierarchical representation learning 
functions, which are massively optimized with stochastic gradient descent 
to encode domain knowledge, i.e. domain invariances, stationarity.

o 𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)
◦ 𝑥:input, θ𝑙: parameters for layer l, 𝑎𝑙 = ℎ𝑙(𝑥, θ𝑙): (non-)linear function

o Given training corpus {𝑋, 𝑌} find optimal parameters

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℓ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

What is a neural network again?
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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Forward connections (Feedforward architecture)



o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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Interweaved connections
(Directed Acyclic Graph
architecture- DAGNN)



o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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o A module is a building block for our network

o Each module is an object/function 𝑎 = ℎ(𝑥; 𝜃) that
◦ Contains trainable parameters (𝜃)
◦ Receives as an argument an input 𝑥
◦ And returns an output 𝑎 based on the activation function ℎ …

o The activation function should be (at least)
first order differentiable (almost) everywhere

o For easier/more efficient backpropagation  store
module input 
◦ easy to get module output fast
◦ easy to compute derivatives

What is a module?
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o A neural network is a composition of modules (building blocks)

o Any architecture works

o If the architecture is a feedforward cascade, no special care

o If acyclic, there is right order of computing the forward computations

o If there are loops, these form recurrent connections (revisited later)

Anything goes or do special constraints exist?
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o Simply compute the activation of each module in the network

𝑎𝑙 = ℎ𝑙 𝑥𝑙; 𝜗 , where 𝑎𝑙 = 𝑥𝑙+1(or 𝑥𝑙 = 𝑎𝑙−1)

o We need to know the precise function behind
each module ℎ𝑙(… )

o Recursive operations
◦ One module’s output is another’s input

o Steps
◦ Visit modules one by one starting from the data input
◦ Some modules might have several inputs from multiple modules 

o Compute modules activations with the right order
◦ Make sure all the inputs computed at the right time

Forward computations for neural networks
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o Simply compute the gradients of each module for our data
◦ We need to know the gradient formulation of each module
𝜕ℎ𝑙(𝑥𝑙; 𝜃𝑙) w.r.t. their inputs 𝑥𝑙 and parameters 𝜃𝑙

o We need the forward computations first
◦ Their result is the sum of losses for our input data

o Then take the reverse network (reverse connections)
and traverse it backwards

o Instead of using the activation functions, we use
their gradients

o The whole process can be described very neatly and concisely
with the backpropagation algorithm

Backward computations for neural networks
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o 𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)
◦ 𝑥:input, θ𝑙: parameters for layer l, 𝑎𝑙 = ℎ𝑙(𝑥, θ𝑙): (non-)linear function

o Given training corpus {𝑋, 𝑌} find optimal parameters

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℓ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

o To use any gradient descent based optimization (𝜃(𝑡+1) = 𝜃(𝑡+1) − 𝜂𝑡
𝜕ℒ

𝜕𝜃(𝑡)
) we 

need the gradients
𝜕ℒ

𝜕𝜃𝑙
, 𝑙 = 1, … , 𝐿

o How to compute the gradients for such a complicated function enclosing other 
functions, like 𝑎𝐿(… )?

Again, what is a neural network again?
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧

◦
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

o When 𝑥 ∈ ℛ𝑚, 𝑦 ∈ ℛ𝑛, 𝑧 ∈ ℛ

◦
𝑑𝑧

𝑑𝑥𝑖
= σ𝑗

𝑑𝑧

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑥𝑖
 gradients from all possible paths

Chain rule
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧

◦
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Chain rule
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧

◦
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

o When 𝑥 ∈ ℛ𝑚, 𝑦 ∈ ℛ𝑛, 𝑧 ∈ ℛ
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𝑑𝑧

𝑑𝑥𝑖
= σ𝑗

𝑑𝑧

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑥𝑖
 gradients from all possible paths

◦ or in vector notation

𝑑𝑧

𝑑𝒙
=

𝑑𝒚

𝑑𝒙

𝑇

⋅
𝑑𝑧

𝑑𝑦

◦
𝑑𝑦

𝑑𝑥
is the Jacobian

Chain rule
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𝑧

𝑦(1) 𝑦(2)

𝑥(1) 𝑥(2) 𝑥(3)



The Jacobian

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES  & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 30

o When 𝑥 ∈ ℛ3, 𝑦 ∈ ℛ2

𝐽 𝑦 𝑥 =
𝑑𝒚

𝑑𝒙
=

𝜕𝑦 1

𝜕𝑥 1

𝜕𝑦 1

𝜕𝑥 2

𝜕𝑦 1

𝜕𝑥 3

𝜕𝑦 2

𝜕𝑥 1

𝜕𝑦 2

𝜕𝑥 2

𝜕𝑦 2

𝜕𝑥 3



o f y = sin 𝑦 , 𝑦 = 𝑔 𝑥 = 0.5 𝑥2

𝑑𝑓

𝑑𝑥
=
𝑑 [sin(𝑦)]

𝑑𝑔

𝑑 0.5𝑥2

𝑑𝑥

= cos 0.5𝑥2 ⋅ 𝑥

Chain rule in practice
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o The loss function ℒ(𝑦, 𝑎𝐿) depends on 𝑎𝐿, which depends on 𝑎𝐿−1, …, 
which depends on 𝑎2: 

o Gradients of parameters of layer l  Chain rule

𝜕ℒ

𝜕𝜃𝑙
=

𝜕ℒ

𝜕𝑎𝐿
∙
𝜕𝑎𝐿
𝜕𝑎𝐿−1

∙
𝜕𝑎𝐿−1
𝜕𝑎𝐿−2

∙ … ∙
𝜕𝑎𝑙
𝜕𝜃𝑙

o When shortened, we need to two quantities

𝜕ℒ

𝜕𝜃𝑙
= (

𝜕𝑎𝑙
𝜕𝜃𝑙

)𝑇⋅
𝜕ℒ

𝜕𝑎𝑙

Backpropagation ⟺ Chain rule!!!
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Gradient of a module w.r.t. its parameters

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , … , θ𝐿−1 , θ𝐿)

Gradient of loss w.r.t. the module output



o For 
𝜕𝑎𝑙

𝜕𝜃𝑙
in  

𝜕ℒ

𝜕𝜃𝑙
= (

𝜕𝑎𝑙

𝜕𝜃𝑙
)𝑇⋅

𝜕ℒ

𝜕𝑎𝑙
we only need the Jacobian of the 𝑙-th

module output 𝑎𝑙 w.r.t. to the module’s parameters 𝜃𝑙

o Very local rule, every module looks for its own

o Since computations can be very local
◦ graphs can be very complicated

◦ modules can be complicated (as long as they are differentiable)

Backpropagation ⟺ Chain rule!!!
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o For 
𝜕ℒ

𝜕𝑎𝑙
in  

𝜕ℒ

𝜕𝜃𝑙
= (

𝜕𝑎𝑙

𝜕𝜃𝑙
)𝑇⋅

𝜕ℒ

𝜕𝑎𝑙
we apply chain rule again

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1
𝜕𝑎𝑙

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1

o We can rewrite 
𝜕𝑎𝑙+1

𝜕𝑎𝑙
as gradient of module w.r.t. to input

◦ Remember, the output of a module is the input for the next one: 𝑎𝑙=𝑥𝑙+1

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1
𝜕𝑥𝑙+1

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1

Backpropagation ⟺ Chain rule!!!
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Recursive rule (good for us)!!!

Gradient w.r.t. the module input

𝑎𝑙 = ℎ𝑙(𝑥𝑙; 𝜃𝑙)

𝑎𝑙+1 = ℎ𝑙+1(𝑥𝑙+1; 𝜃𝑙+1)

𝑥𝑙+1 = 𝑎𝑙



o Often module functions  depend on multiple input variables
◦ Softmax!

◦ Each output dimension depends on
multiple input dimensions

o For these cases for the 
𝜕𝑎𝑙

𝜕𝑥𝑙
(or 

𝜕𝑎𝑙

𝜕𝜃𝑙
) we must compute Jacobian matrix as 𝑎𝑙

depends on multiple input 𝑥𝑙 (or 𝜃𝑙)
◦ e.g. in softmax 𝑎2 depends on all 𝑒𝑥

1
, 𝑒𝑥

2
and 𝑒𝑥

3
, not just on 𝑒𝑥

2

Multivariate functions 𝑓(𝒙)
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𝑎𝑗 =
𝑒𝑥

𝑗

𝑒𝑥
1
+ 𝑒𝑥

2
+ 𝑒𝑥

3 , 𝑗 = 1,2,3



o Often in modules the output depends only in a single input
◦ e.g. a sigmoid  𝑎 = 𝜎(𝑥), or 𝑎 = tanh(𝑥), or 𝑎 = exp(𝑥)

o Not need for full Jacobian, only the diagonal: anyways 
d𝑎𝑖

𝑑𝑥𝑗
= 0, ∀ i ≠ j

◦ Can rewrite equations as inner products to save computations

Diagonal Jacobians
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𝑑𝒂

𝑑𝒙
=
𝑑𝝈

𝑑𝒙
=

𝜎(𝑥1)(1 − 𝜎(𝑥1)) 0 0

0 𝜎(𝑥2)(1 − 𝜎(𝑥2)) 0

0 0 𝜎(𝑥3)(1 − 𝜎(𝑥3))

~

𝜎(𝑥1)(1 − 𝜎(𝑥1))

𝜎(𝑥2)(1 − 𝜎(𝑥2))

𝜎(𝑥3)(1 − 𝜎(𝑥3))

𝑎 𝑥 = σ 𝒙 = σ
𝑥1

𝑥2

𝑥3
=

σ(𝑥1)

σ(𝑥2)

σ(𝑥3)



o To make sure everything is done correctly  “Dimension analysis”

o The dimensions of the gradient w.r.t. 𝜃𝑙 must be equal to the dimensions 
of the respective weight 𝜃𝑙

dim
𝜕ℒ

𝜕𝑎𝑙
= dim 𝑎𝑙

dim
𝜕ℒ

𝜕𝜃𝑙
= dim 𝜃𝑙

Dimension analysis
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o For  
𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1

𝑇
𝜕ℒ

𝜕𝑎𝑙+1

[𝑑𝑙× 1] = 𝑑𝑙+1 × 𝑑𝑙
𝑇 ⋅ [𝑑𝑙+1× 1]

o For  
𝜕ℒ

𝜕𝜃𝑙
=

𝜕𝛼𝑙

𝜕𝜃𝑙
⋅

𝜕ℒ

𝜕𝛼𝑙

𝑇

[𝑑𝑙−1× 𝑑𝑙] = [𝑑𝑙−1× 1] ∙ [1 × 𝑑𝑙]

Dimension analysis
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dim 𝑎𝑙 = 𝑑𝑙
dim 𝜃𝑙 = 𝑑𝑙−1 × 𝑑𝑙



Backpropagation: Recursive chain rule

o Step 1. Compute forward propagations for all layers recursively

𝑎𝑙 = ℎ𝑙 𝑥𝑙 and 𝑥𝑙+1 = 𝑎𝑙

o Step 2. Once done with forward propagation, follow the reverse path. 
◦ Start from the last layer and for each new layer compute the gradients

◦ Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients 
𝜕ℒ

𝜕𝜃𝑙
with Stochastic Gradient Descend to train

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1
𝜕𝑥𝑙+1

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1

𝜕ℒ

𝜕𝜃𝑙
=
𝜕𝑎𝑙
𝜕𝜃𝑙

⋅
𝜕ℒ

𝜕𝑎𝑙

𝑇



Backpropagation: Recursive chain rule

o Step 1. Compute forward propagations for all layers recursively

𝑎𝑙 = ℎ𝑙 𝑥𝑙 and 𝑥𝑙+1 = 𝑎𝑙

o Step 2. Once done with forward propagation, follow the reverse path. 
◦ Start from the last layer and for each new layer compute the gradients

◦ Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients 
𝜕ℒ

𝜕𝜃𝑙
with Stochastic Gradient Descend to train

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1
𝜕𝑥𝑙+1

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1

𝜕ℒ

𝜕𝜃𝑙
=
𝜕𝑎𝑙
𝜕𝜃𝑙

⋅
𝜕ℒ

𝜕𝑎𝑙

𝑇

Vector with dimensions [𝑑𝑙+1× 1]

Jacobian matrix with dimensions 𝑑𝑙+1 × 𝑑𝑙
𝑇

Vector with dimensions [𝑑𝑙× 1]

Matrix with dimensions [𝑑𝑙−1× 𝑑𝑙]

Vector with dimensions [𝑑𝑙−1× 1]

Vector with dimensions [1 × 𝑑𝑙]



o 𝑑𝑙−1 = 15 (15 neurons), 𝑑𝑙 = 10 (10 neurons), 𝑑𝑙+1 = 5 (5 neurons)

o Let’s say 𝑎𝑙 = 𝜃𝑙
Τ𝑥𝑙 and 𝑎𝑙+1 = θ𝑙+1

Τ 𝑥𝑙+1

o Forward computations
◦ 𝑎𝑙−1 ∶ 15 × 1 , 𝑎𝑙 : 10 × 1 , 𝑎𝑙+1 : [5 × 1]

◦ 𝑥𝑙: 15 × 1 , 𝑥𝑙+1: 10 × 1

◦ 𝜃𝑙: 15 × 10

o Gradients

◦
𝜕ℒ

𝜕𝑎𝑙
: 5 × 10 𝑇 ∙ 5 × 1 = 10 × 1

◦
𝜕ℒ

𝜕𝜃𝑙
∶ 15 × 1 ∙ 10 × 1 𝑇 = 15 × 10

Dimensionality analysis: An Example

𝑥𝑙 = 𝑎𝑙−1



Intuitive
Backpropagation

UVA DEEP LEARNING COURSE
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OPTIMIZING NEURAL NETWORKS IN THEORY 
AND IN PRACTICE - PAGE 42



o Things are dead simple, just compute per module

o Then follow iterative procedure

Backpropagation in practice
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𝜕𝑎(𝑥; 𝜃)

𝜕𝑥

𝜕𝑎(𝑥; 𝜃)

𝜕𝜃

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1
𝜕𝑥𝑙+1

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1

𝜕ℒ

𝜕𝜃𝑙
=
𝜕𝑎𝑙
𝜕𝜃𝑙

⋅
𝜕ℒ

𝜕𝑎𝑙

𝑇



o Things are dead simple, just compute per module

o Then follow iterative procedure [remember: 𝑎𝑙 = 𝑥𝑙+1]

Backpropagation in practice
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𝜕𝑎(𝑥; 𝜃)

𝜕𝑥

𝜕𝑎(𝑥; 𝜃)

𝜕𝜃

Module derivatives

Derivatives from layer above

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1
𝜕𝑥𝑙+1

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1

𝜕ℒ

𝜕𝜃𝑙
=
𝜕𝑎𝑙
𝜕𝜃𝑙

⋅
𝜕ℒ

𝜕𝑎𝑙

𝑇



o For instance, let’s consider our module is the function cos 𝜃𝑥 + 𝜋

o The forward computation is simply

Forward propagation
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import numpy as np
def forward(x):

return np.cos(self.theta*x)+np.pi



o The backpropagation for the function cos 𝑥 + 𝜋

Backward propagation
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import numpy as np
def backward_dx(x):

return -self.theta*np.sin(self.theta*x)

import numpy as np
def backward_dtheta(x):

return -x*np.sin(self.theta*x)



Backpropagation: 
An example
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OPTIMIZING NEURAL NETWORKS IN THEORY 
AND IN PRACTICE - PAGE 47



Backpropagation visualization
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𝑥1
1 𝑥1

2 𝑥1
3 𝑥1

4

ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡)
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ℒ𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎1= ℎ1(𝑥1)

Example

𝑎1 = 𝜎(𝜃1𝑥1)

Store!!! 

𝑥1



Backpropagation visualization at epoch (𝑡)
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ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎2= ℎ2(𝑥2)

Example

𝑎2 = 𝜎(𝜃2𝑥2)
𝑎1 = 𝜎(𝜃1𝑥1)

Store!!! 

𝑥1



Backpropagation visualization at epoch (𝑡)
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ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎3= ℎ3(𝑥3)

Example

𝑎3 = 𝑦 − 𝑥3
2

𝑎1 = 𝜎(𝜃1𝑥1)

𝑎2 = 𝜎(𝜃2𝑥2)

Store!!! 

𝑥1



Backpropagation visualization at epoch (𝑡)
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ℒ
Backpropagation

𝑎3= ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Example

𝜕ℒ

𝜕𝑎3
= … Direct computation

𝜕ℒ

𝜕𝜃3

𝑎3 = ℒ 𝑦, 𝑥3 = ℎ3(𝑥3) = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

𝑥1



Backpropagation visualization at epoch (𝑡)
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ℒ

Stored during forward computations

𝑎3 = ℎ3(𝑥3 )

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝜃2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑎3
∙
𝜕𝑎3
𝜕𝑎2

Backpropagation

Example

ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑎2
= −(𝑦 − 𝑥3)

𝑥3 = 𝑎2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎2
𝑥2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝜃2𝑥2)

𝜕𝑎2
𝜕𝜃2

= 𝑥2𝜎(𝜃2𝑥2)(1 − 𝜎(𝜃2𝑥2))

= 𝑥2𝑎2(1 − 𝑎2)

𝜕𝜎(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

𝑥1



Backpropagation visualization at epoch (𝑡)
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ℒ𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Backpropagation

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
∙
𝜕𝑎1
𝜕𝜃1

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝑎1

Example

ℒ 𝑦, 𝑎3 = 0.5 𝑦 − 𝑎3
2

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
𝜃2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝜃2𝑥2)
𝑥2 = 𝑎1

𝜕𝑎2
𝜕𝑎1

=
𝜕𝑎2
𝜕𝑥2

= 𝜃2𝑎2(1 − 𝑎2)

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
𝑥1𝑎1(1 − 𝑎1)

𝑎1 = 𝜎(𝜃1𝑥1)

𝜕𝑎1
𝜕𝜃1

= 𝑥1𝑎1(1 − 𝑎1)

Computed from the exact previous 
backpropagation step (Remember, recursive rule)

𝑥1



Backpropagation visualization at epoch (𝑡 + 1)
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ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎1= ℎ1(𝑥1)

Example

𝑎1 = 𝜎(𝜃1𝑥1)

Store!!! 

𝑥1



Backpropagation visualization at epoch (𝑡 + 1)
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ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎2= ℎ2(𝑥2)

Example

𝑎2 = 𝜎(𝜃2𝑥2)
𝑎1 = 𝜎(𝜃1𝑥1)

Store!!! 

𝑥1



Backpropagation visualization at epoch (𝑡 + 1)
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ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎3= ℎ3(𝑥3)

Example

𝑎3 = 𝑦 − 𝑥3
2

𝑎1 = 𝜎(𝜃1𝑥1)

𝑎2 = 𝜎(𝜃2𝑥2)

Store!!! 

𝑥1



Backpropagation visualization at epoch (𝑡 + 1)
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ℒ
Backpropagation

𝑎3= ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Example

𝜕ℒ

𝜕𝑎3
= … Direct computation

𝜕ℒ

𝜕𝜃3

𝑎3 = ℒ 𝑦, 𝑥3 = ℎ3(𝑥3) = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

𝑥1



Backpropagation visualization at epoch (𝑡 + 1)
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ℒ

Stored during forward computations

𝑎3 = ℎ3(𝑥3 )

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝜃2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑎3
∙
𝜕𝑎3
𝜕𝑎2

Backpropagation

Example

ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑎2
= −(𝑦 − 𝑥3)

𝑥3 = 𝑎2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎2
𝑥2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝜃2𝑥2)

𝜕𝑎2
𝜕𝜃2

= 𝑥2𝜎(𝜃2𝑥2)(1 − 𝜎(𝜃2𝑥2))

= 𝑥2𝑎2(1 − 𝑎2)

𝜕𝜎(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

𝑥1



Backpropagation visualization at epoch (𝑡 + 1)
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ℒ𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Backpropagation

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
∙
𝜕𝑎1
𝜕𝜃1

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝑎1

Example

ℒ 𝑦, 𝑎3 = 0.5 𝑦 − 𝑎3
2

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
𝜃2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝜃2𝑥2)
𝑥2 = 𝑎1

𝜕𝑎2
𝜕𝑎1

=
𝜕𝑎2
𝜕𝑥2

= 𝜃2𝑎2(1 − 𝑎2)

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
𝑥1𝑎1(1 − 𝑎1)

𝑎1 = 𝜎(𝜃1𝑥1)

𝜕𝑎1
𝜕𝜃1

= 𝑥1𝑎1(1 − 𝑎1)

Computed from the exact previous 
backpropagation step (Remember, recursive rule)

𝑥1



o For classification use cross-entropy loss

o Use Stochastic Gradient Descent on mini-batches

o Shuffle training examples at each new epoch

o Normalize input variables
◦ 𝜇, 𝜎2 = 0,1

◦ 𝜇 = 0

Some practical tricks of the trade
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Everything is a
module
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OPTIMIZING NEURAL NETWORKS IN THEORY 
AND IN PRACTICE - PAGE 62



o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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ℎ
1 (𝑥

𝑖 ;𝜗
)

ℎ
2 (𝑥

𝑖 ;𝜗
)

ℎ
3 (𝑥

𝑖 ;𝜗
)

ℎ
4 (𝑥

𝑖 ;𝜗
)

ℎ
5 (𝑥

𝑖 ;𝜗
)

𝐿
𝑜
𝑠𝑠

𝐼𝑛
𝑝
𝑢
𝑡

ℎ1(𝑥𝑖; 𝜗)

ℎ2(𝑥𝑖; 𝜗)

ℎ3(𝑥𝑖; 𝜗)

ℎ4(𝑥𝑖; 𝜗)

ℎ5(𝑥𝑖; 𝜗)

𝐿𝑜𝑠𝑠

𝐼𝑛𝑝𝑢𝑡

ℎ2(𝑥𝑖; 𝜗)

ℎ4(𝑥𝑖; 𝜗)

ℎ
1 (𝑥

𝑖 ;𝜗
)

ℎ
2 (𝑥

𝑖 ;𝜗
)

ℎ
3 (𝑥

𝑖 ;𝜗
)

ℎ
4 (𝑥

𝑖 ;𝜗
)

ℎ
5 (𝑥

𝑖 ;𝜗
)

𝐿
𝑜
𝑠𝑠

𝐼𝑛
𝑝
𝑢
𝑡

Functions Modules



o Activation function 𝑎 = 𝜃𝑥

o Gradient with respect to the input 
𝜕𝑎

𝜕𝑥
= 𝜃

o Gradient with respect to the parameters 
𝜕𝑎

𝜕𝜃
= 𝑥

Linear module
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o Activation function 𝑎 = 𝜎 𝑥 =
1

1+𝑒−𝑥

o Gradient wrt the input 
𝜕𝑎

𝜕𝑥
= 𝜎(𝑥)(1 − 𝜎(𝑥))

o Gradient wrt the input 
𝜕𝜎 𝜃𝑥

𝜕𝑥
= 𝜃 ∙ 𝜎 𝜃𝑥 1 − 𝜎 𝜃𝑥

o Gradient wrt the parameters
𝜕𝜎 𝜃𝑥

𝜕𝜃
= 𝑥 ∙ 𝜎(𝜃𝑥)(1 − 𝜎(𝜃𝑥))

Sigmoid module
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+ Output can be interpreted as probability

+ Output bounded in [0, 1]  network cannot overshoot

- Always multiply with < 1  Gradients can be small in deep networks

- The gradients at the tails flat to 0  no serious SGD updates
◦ Overconfident, but not necessarily “correct”

◦ Neurons get stuck

Sigmoid module – Pros and Cons
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o Activation function 𝑎 = 𝑡𝑎𝑛ℎ 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

o Gradient with respect to the input 
𝜕𝑎

𝜕𝑥
= 1 − 𝑡𝑎𝑛ℎ2(𝑥)

o Similar to sigmoid, but with different output range
◦ [−1,+1] instead of 0,+1

◦ Stronger gradients, because data is centered
around 0 (not 0.5)

◦ Less bias to hidden layer neurons as now outputs
can be both positive and negative (more likely
to have zero mean in the end)

Tanh module
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o Activation function 𝑎 = ℎ(𝑥) = max 0, 𝑥

o Gradient wrt the input 
𝜕𝑎

𝜕𝑥
= ቊ

0, 𝑖𝑓 𝑥 ≤ 0
1, 𝑖𝑓𝑥 > 0

o Very popular in computer vision and speech recognition

o Much faster computations, gradients
◦ No vanishing or exploding problems, only comparison, addition, multiplication 

o People claim biological plausibility

o Sparse activations

o No saturation

o Non-symmetric

o Non-differentiable at 0

o A large gradient during training can cause a neuron to “die”. Higher learning rates mitigate the problem

Rectified Linear Unit (ReLU) module (Alexnet)



ReLU convergence rate

ReLU

Tanh



o Soft approximation (softplus): 𝑎 = ℎ(𝑥) = ln 1 + 𝑒𝑥

o Noisy ReLU: 𝑎 = ℎ 𝑥 = max 0, x + ε , ε~𝛮(0, σ(x))

o Leaky ReLU: 𝑎 = ℎ 𝑥 = ቊ
𝑥, 𝑖𝑓 𝑥 > 0

0.01𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

o Parametric ReLu: 𝑎 = ℎ 𝑥 = ቊ
𝑥, 𝑖𝑓 𝑥 > 0

𝛽𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(parameter 𝛽 is trainable)

Other ReLUs



o Activation function 𝑎(𝑘) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥(𝑘)) =
𝑒𝑥

(𝑘)

σ𝑗 𝑒
𝑥(𝑗)

◦ Outputs probability distribution, σ𝑘=1
𝐾 𝑎(𝑘) = 1 for 𝐾 classes

o Because 𝑒𝑎+𝑏 = 𝑒𝑎𝑒𝑏, we usually compute

𝑎(𝑘) =
𝑒𝑥

(𝑘)−𝜇

σ𝑗 𝑒
𝑥(𝑗)−𝜇

, 𝜇 = max𝑘 𝑥
(𝑘) because

𝑒𝑥
(𝑘)−𝜇

σ𝑗 𝑒
𝑥(𝑗)−𝜇

=
𝑒𝜇𝑒𝑥

(𝑘)

𝑒𝜇 σ𝑗 𝑒
𝑥(𝑗)

=
𝑒𝑥

(𝑘)

σ𝑗 𝑒
𝑥(𝑗)

o Avoid exponentianting large numbers  better stability

Softmax module
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o Activation function 𝑎(𝑥) = 0.5 𝑦 − 𝑥 2

◦ Mostly used to measure the loss in regression tasks

o Gradient with respect to the input 
𝜕𝑎

𝜕𝑥
= 𝑥 − 𝑦

Euclidean loss module
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o Activation function 𝑎 𝑥 = −σ𝑘=1
𝐾 𝑦(𝑘) log 𝑥(𝑘), 𝑦(𝑘)= {0, 1}

o Gradient with respect to the input 
𝜕𝑎

𝜕𝑥(𝑘)
= −

1

𝑥(𝑘)

o The cross-entropy loss is the most popular classification losses for 
classifiers that output probabilities (not SVM)

o Cross-entropy loss couples well softmax/sigmoid module
◦ Often the modules are combined and joint gradients are computed

o Generalization of logistic regression for more than 2 outputs

Cross-entropy loss (log-loss or log-likelihood) module
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o Regularization modules
◦ Dropout

o Normalization modules
◦ ℓ2-normalization, ℓ1-normalization

Question: When is a normalization module needed?

Answer: Possibly when combining different modalities/networks (e.g. in 
Siamese or multiple-branch networks)

o Loss modules
◦ Hinge loss

o and others, which we are going to discuss later in the course

Many, many more modules out there …

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES  & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 74



Composite 
modules

or …

“Make your own 
module”
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Backpropagation again

o Step 1. Compute forward propagations for all layers recursively

𝑎𝑙 = ℎ𝑙 𝑥𝑙 and 𝑥𝑙+1 = 𝑎𝑙

o Step 2. Once done with forward propagation, follow the reverse path. 
◦ Start from the last layer and for each new layer compute the gradients

◦ Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients 
𝜕ℒ

𝜕𝜃𝑙
with Stochastic Gradient Descend to train

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1
𝜕𝑥𝑙+1

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1

𝜕ℒ

𝜕𝜃𝑙
=
𝜕𝑎𝑙
𝜕𝜃𝑙

⋅
𝜕ℒ

𝜕𝑎𝑙

𝑇



o Everything can be a module, given some ground rules

o How to make our own module?
◦ Write a function that follows the ground rules

o Needs to be (at least) first-order differentiable (almost) everywhere

o Hence, we need to be able to compute the

𝜕𝑎(𝑥;𝜃)

𝜕𝑥
and 

𝜕𝑎(𝑥;𝜃)

𝜕𝜃

New modules
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o As everything can be a module, a module of modules could also be a 
module

o We can therefore make new building blocks as we please, if we expect 
them to be used frequently

o Of course, the same rules for the eligibility of modules still apply

A module of modules
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o Assume the sigmoid 𝜎(… ) operating on top of 𝜃𝑥
𝑎 = 𝜎(𝜃𝑥)

o Directly computing it  complicated backpropagation equations

o Since everything is a module, we can decompose this to 2 modules

1 sigmoid == 2 modules?
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𝑎1 = 𝜃𝑥 𝑎2 = 𝜎(𝑎1)



- Two backpropagation steps instead of one

+ But now our gradients are simpler
◦ Algorithmic way of computing gradients

◦ We avoid taking more gradients than needed in a (complex) non-linearity

1 sigmoid == 2 modules?
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𝑎1 = 𝜃𝑥 𝑎2 = 𝜎(𝑎1)



Network-in-network [Lin et al., arXiv 2013]
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ResNet [He et al., CVPR 2016]
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o RBF module

𝑎 =
𝑗
𝑢𝑗 exp(−𝛽𝑗(𝑥 − 𝑤𝑗)

2)

o Decompose into cascade of modules

Radial Basis Function (RBF) Network module
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𝑎1 = (𝑥 − 𝑤)2

𝑎2 = exp −𝛽𝑎1

𝑎4 = 𝑝𝑙𝑢𝑠(… , 𝑎3
𝑗
, … )

𝑎3 = 𝑢𝑎2



o An RBF module is good for regression problems, in which cases it is 
followed by a Euclidean loss module

o The Gaussian centers 𝑤𝑗 can be initialized externally, e.g. with k-means

Radial Basis Function (RBF) Network module
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𝑎1 = (𝑥 − 𝑤)2

𝑎2 = exp −𝛽𝑎1

𝑎4 = 𝑝𝑙𝑢𝑠(… , 𝑎3
𝑗
, … )

𝑎3 = 𝑢𝑎2



An RBF visually
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𝑎1 = (𝑥 − 𝑤)2→ 𝑎2 = exp −𝛽𝑎1 → 𝑎3 = 𝑢𝑎2 → 𝑎4 =𝑝𝑙𝑢𝑠(… , 𝑎3
𝑗
, … )

𝛼1
(3)

= (𝑥 − 𝑤1)
2

𝛼1
(2)

= (𝑥 − 𝑤1)
2𝛼1

(1)
= (𝑥 − 𝑤1)

2

𝛼2
(1)

= exp(−𝛽1𝛼1
(1)
) 𝛼2

(2)
= exp(−𝛽1𝛼1

(2)
) 𝛼2

(3)
= exp(−𝛽1𝛼1

(3)
)

𝛼3
(1)

= 𝑢1𝛼2
(1)

𝛼3
(2)

= 𝑢2𝛼2
(2) 𝛼3

(3)
= 𝑢3𝛼2

(3)

𝑎4 = 𝑝𝑙𝑢𝑠(𝑎3)

𝑎5 = 𝑦 − 𝑎4
2

RBF module



Unit tests
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o Always check your implementations
◦ Not only for Deep Learning

o Does my implementation of the 𝑠𝑖𝑛 function return the correct values?
◦ If I execute sin(𝜋/2) does it return 1 as it should

o Even more important for gradient functions
◦ not only our implementation can be wrong, but also our math

o Slightest sign of malfunction  ALWAYS RECHECK
◦ Ignoring problems never solved problems

Unit test
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o Most dangerous part for new modules  get gradients wrong

o Compute gradient analytically

o Compute gradient computationally

o Compare

Δ 𝜃(𝑖) =
𝜕𝑎(𝑥; 𝜃(𝑖))

𝜕𝜃(𝑖)
− 𝑔 𝜃(𝑖)

2

o Is difference in 10−4, 10−7  thengradients are good

Gradient check
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Original gradient definition: 
𝑑𝑓(𝑥)

𝑑𝑥
= limℎ→0

𝑓(𝑥+ℎ)

Δℎ

𝑔 𝜃(𝑖) ≈
𝑎 𝜃 + 𝜀 − 𝑎 𝜃 − 𝜀

2𝜀



o Perturb one parameter 𝜃(𝑖) at a time with 𝜃(𝑖) + 𝜀

o Then check Δ 𝜃(𝑖) for that one parameter only

o Do not perturb the whole parameter vector 𝜃 + 𝜀
◦ This will give wrong results (simple geometry)

o Sample dimensions of the gradient vector
◦ If you get a few dimensions of an gradient vector good, all is good

◦ Sample function and bias gradients equally, otherwise you might get your bias wrong

Gradient check
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o Can we replace analytical gradients with numerical gradients?

o In theory, yes!

o In practice, no!
◦ Too slow

Numerical gradients
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o What about trigonometric modules?

o Or polynomial modules?

o Or new loss modules?

Be creative!
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Summary

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES  & MAX WELLING
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o Machine learning paradigm for neural networks

o Backpropagation algorithm, backbone for 
training neural networks

o Neural network == modular architecture

o Visited different modules, saw how to 
implement and check them



o http://www.deeplearningbook.org/
◦ Part I: Chapter 2-5

◦ Part II: Chapter 6

Reading material & references
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http://www.deeplearningbook.org/


Next lecture
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o Optimizing deep networks

o Which loss functions per machine learning task

o Advanced modules

o Deep Learning theory


