

Lecture 3: Deeper into Deep Learning and Optimizations

Deep Learning @ UvA

- Machine learning paradigm for neural networks
- Backpropagation algorithm, backbone for training neural networks
- Neural network == modular architecture
- Visited different modules, saw how to implement and check them

Lecture overview

- How to define our model and optimize it in practice
- Data preprocessing and normalization
- Optimization methods
- Regularizations
- Architectures and architectural hyper-parameters
- Learning rate
- Weight initializations
- Good practices

Deeper into Neural Networks & Deep Neural Nets

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES & MAX WELLING DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 4

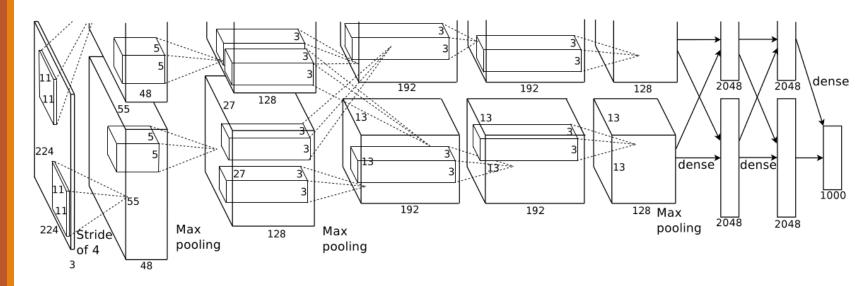


Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

A Neural/Deep Network in a nutshell

1. The Neural Network

$$a_L(x;\theta_{1,\dots,L}) = h_L(h_{L-1}(\dots h_1(x,\theta_1),\theta_{L-1}),\theta_L)$$

2. Learning by minimizing empirical error

$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \mathcal{L}(y, a_L(x; \theta_{1,\dots,L}))$$

3. Optimizing with Gradient Descend based methods $\theta^{(t+1)} = \theta^{(t)} - \eta_t \nabla_\theta \mathcal{L}$

SGD vs GD

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES & MAX WELLING DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 6 1. The Neural Network

$$a_L(x;\theta_{1,\dots,L}) = h_L(h_{L-1}(\dots h_1(x,\theta_1),\theta_{L-1}),\theta_L)$$

2. Learning by minimizing empirical error

$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \mathcal{L}(y, a_L(x; \theta_{1,...,L}))$$

3. Optimizing with Gradient Descend based methods $\theta^{(t+1)} = \theta^{(t)} - \eta_t \nabla_{\theta} \mathcal{L}$

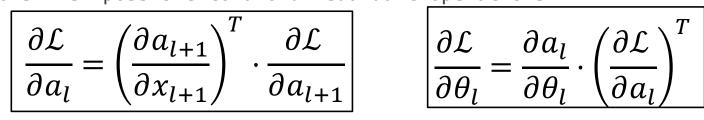
Backpropagation again

• Step 1. Compute forward propagations for all layers recursively

$$a_l = h_l(x_l)$$
 and $x_{l+1} = a_l$

Step 2. Once done with forward propagation, follow the reverse path.
 Start from the last layer and for each new layer compute the gradients

• Cache computations when possible to avoid redundant operations



• Step 3. Use the gradients $\frac{\partial \mathcal{L}}{\partial \theta_l}$ with Stochastic Gradient Descend to train

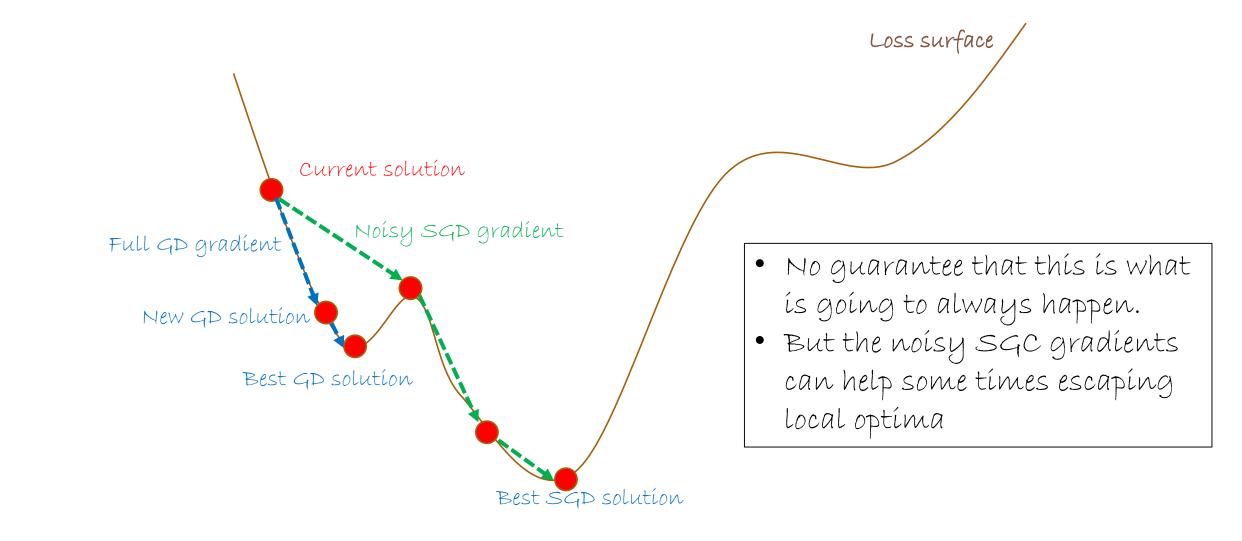
Still, backpropagation can be slow

- Often loss surfaces are
 - non-quadratic
 - highly non-convex
 - very high-dimensional
- Datasets are typically really large to compute complete gradients
- No real guarantee that
 - the final solution will be good
 - we converge fast to final solution
 - or that there will be convergence

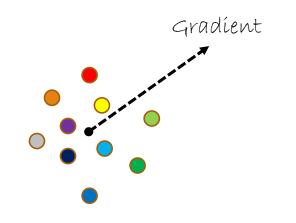
Stochastically sample "mini-batches" from dataset D
The size of B_i can contain even just 1 sample

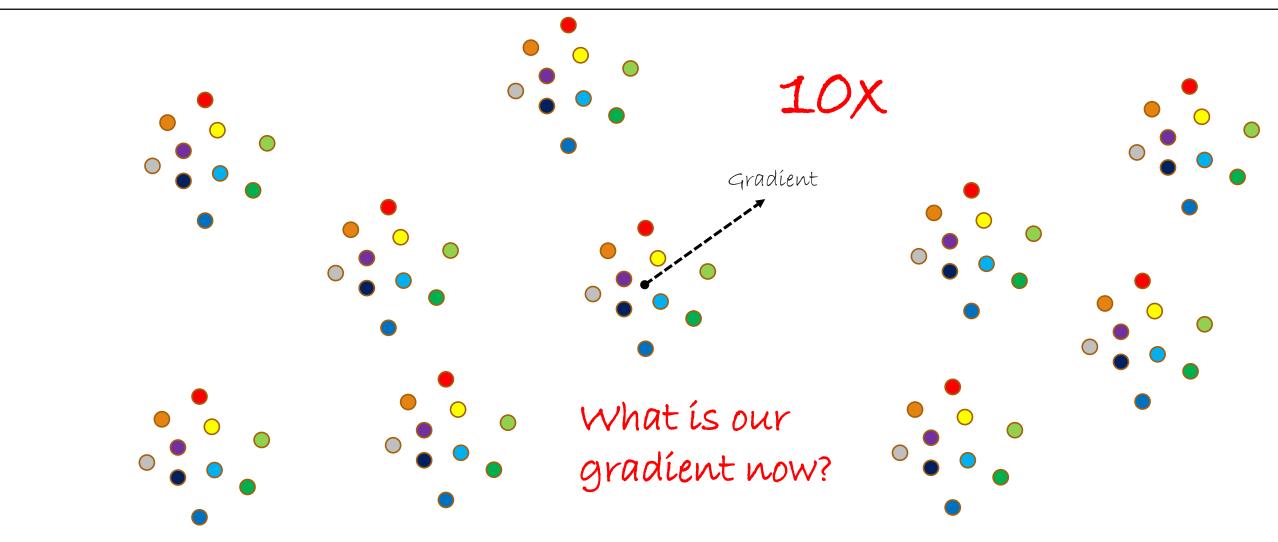
- $B_{j} = sample(D)$ $\theta^{(t+1)} = \theta^{(t)} - \frac{\eta_{t}}{|B_{j}|} \sum_{i \in B_{j}} \nabla_{\theta} \mathcal{L}_{i}$
- Much faster than Gradient Descend
- Results are often better
- Also suitable for datasets that change over time
- Variance of gradients increases when batch size decreases

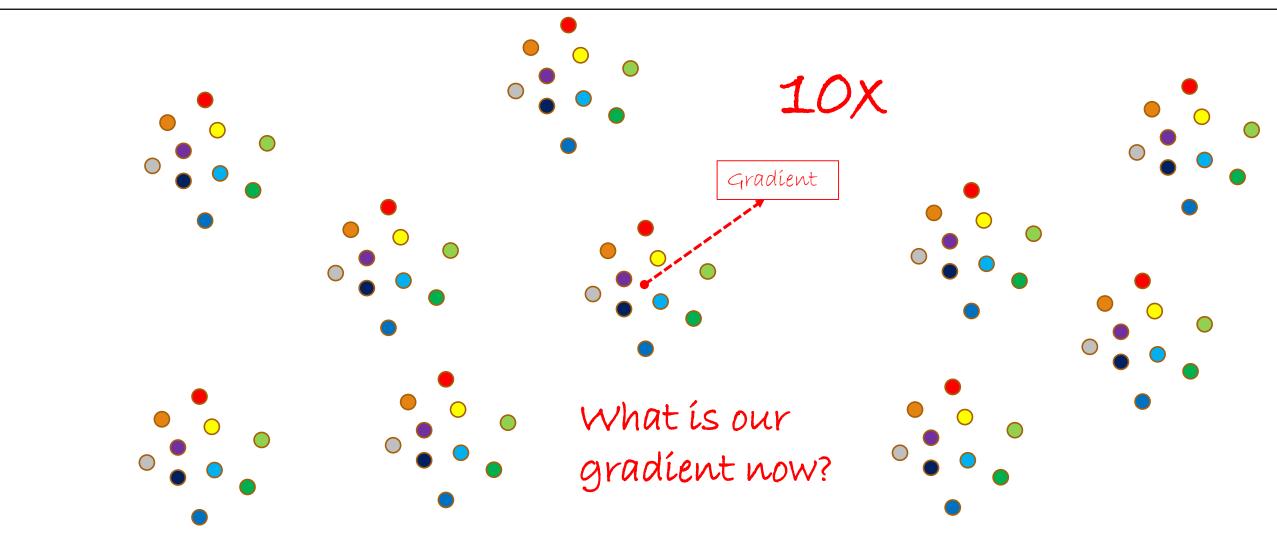
SGD is often better



- (A bit) Noisy gradients act as regularization
- \circ Gradient Descend \rightarrow Complete gradients
- Complete gradients fit optimally the (arbitrary) data we have, not the distribution that generates them
 - All training samples are the "absolute representative" of the input distribution
 - Test data will be no different than training data
 - Suitable for traditional optimization problems: "find optimal route"
 - \circ But for ML we cannot make this assumption ightarrow test data are always different
- O Stochastic gradients → sampled training data sample roughly representative gradients
 - Model does not overfit to the particular training samples







• Of course in real situations data do not replicate

- However, after a sizeable amount of data there are clusters of data that are similar
- Hence, the gradient is approximately alright
- Approximate alright is great, is even better in many cases actually

SGD for dynamically changed datasets

- Often datasets are not "rigid"
- o Imagine Instagram
 - Let's assume 1 million of new images uploaded per week and we want to build a "cool picture" classifier
 - Should "cool pictures" from the previous year have the same as much influence?
 - No, the learning machine should track these changes
- With GD these changes go undetected, as results are averaged by the many more "past" samples
 Past "over-dominates"
- A properly implemented SGD can track changes much better and give better models
 - [LeCun2002]

Popular in 2014

Popular in 2010

Shuffling examples

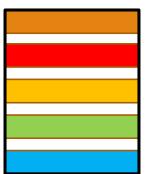
Dataset

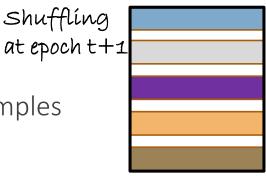
- Applicable only with SGD
- Choose samples with maximum information content
- Mini-batches should contain examples from different classes

As different as possible

- Prefer samples likely to generate larger errors
 - $^{\circ}$ Otherwise gradients will be small ightarrow slower learning
 - Check the errors from previous rounds and prefer "hard examples"
 - Don't overdo it though :P, beware of outliers
- In practice, split your dataset into mini-batches
 - Each mini-batch is as class-divergent and rich as possible
 - $^{\circ}$ New epoch \rightarrow to be safe new batches & new, randomly shuffled examples

Shufflíng at epoch t





Advantages of Gradient Descend batch learning

- Conditions of convergence well understood
- Acceleration techniques can be applied
 - Second order (Hessian based) optimizations are possible
 - Measuring not only gradients, but also curvatures of the loss surface
- Simpler theoretical analysis on weight dynamics and convergence rates

SGD is preferred to Gradient Descend

- Training is orders faster
 - In real datasets Gradient Descend is not even realistic
- o Solutions generalize better
 - \circ More efficient \rightarrow larger datasets
 - \circ Larger datasets ightarrow better generalization
- How many samples per mini-batch?
 - Hyper-parameter, trial & error
 - Usually between 32-256 samples

Data preprocessing & normalization

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES & MAX WELLING DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 20 1. The Neural Network

$$a_L(\mathbf{x};\theta_{1,\dots,L}) = h_L(h_{L-1}(\dots h_1(\mathbf{x},\theta_1),\theta_{L-1}),\theta_L)$$

2. Learning by minimizing empirical error

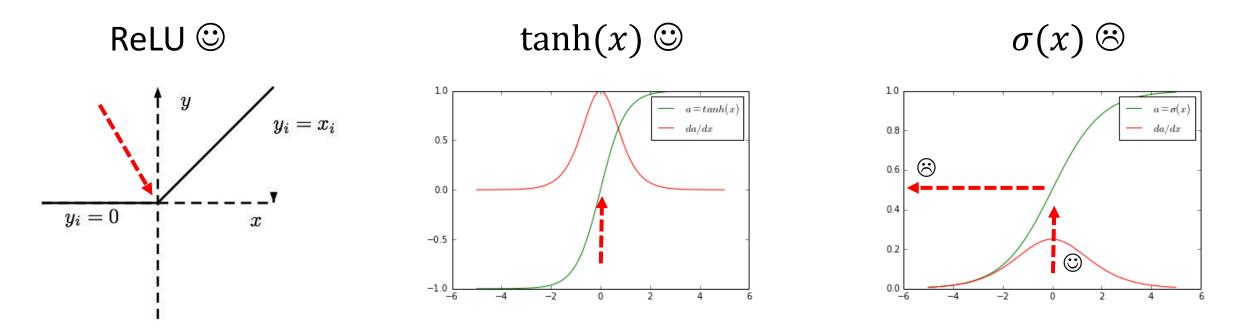
$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \mathcal{L}(y, a_L(x; \theta_{1,...,L}))$$

3. Optimizing with Gradient Descend based methods

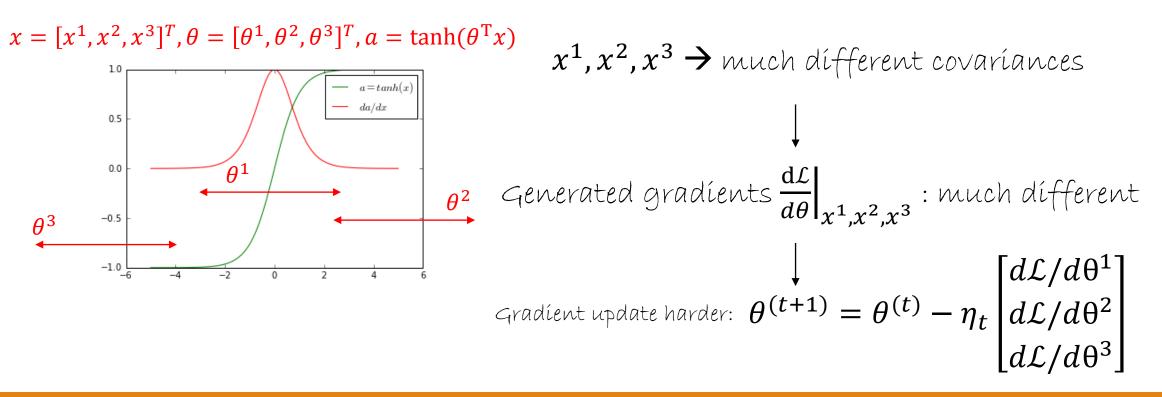
$$\theta^{(t+1)} = \theta^{(t)} - \eta_t \nabla_\theta \mathcal{L}$$

Data pre-processing

- Center data to be roughly 0
 - Activation functions usually "centered" around 0
 - Convergence usually faster
 - \circ Otherwise bias on gradient direction ightarrow might slow down learning



- Scale input variables to have similar diagonal covariances $c_i = \sum_i (x_i^{(j)})^2$
 - \circ Similar covariances \rightarrow more balanced rate of learning for different weights
 - Rescaling to 1 is a good choice, unless some dimensions are less important



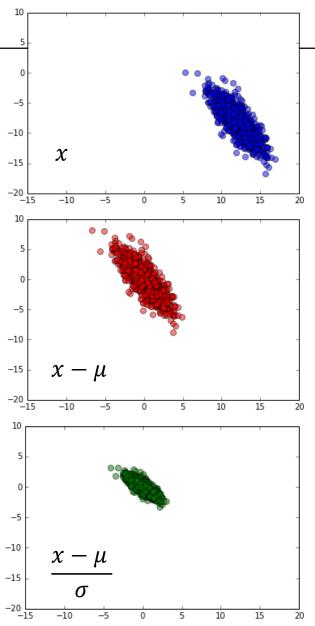
- Input variables should be as decorrelated as possible
 - Input variables are "more independent"
 - Network is forced to find non-trivial correlations between inputs
 - \circ Decorrelated inputs \rightarrow Better optimization
 - Obviously not the case when inputs are by definition correlated (sequences)

o Extreme case

• extreme correlation (linear dependency) might cause problems [CAUTION]

Normalization: $N(\mu, \sigma^2) = N(0, 1)$

- Input variables follow a Gaussian distribution (roughly)
- In practice:
 - from training set compute mean and standard deviation
 - Then subtract the mean from training samples
 - Then divide the result by the standard deviation



$N(\mu, \sigma^2) = N(0, 1) - Making things faster$

- \circ Instead of "per-dimension" \rightarrow all input dimensions simultaneously
- o If dimensions have similar values (e.g. pixels in natural images)
 - Compute one (μ, σ^2) instead of as many as the input variables
 - Or the per color channel pixel average/variance

$$(\mu_{red}, \sigma_{red}^2), (\mu_{green}, \sigma_{green}^2), (\mu_{blue}, \sigma_{blue}^2)$$

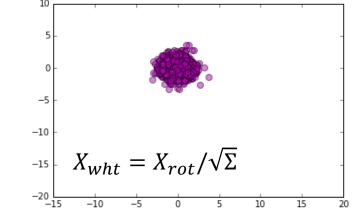
Even simpler: Centering the input

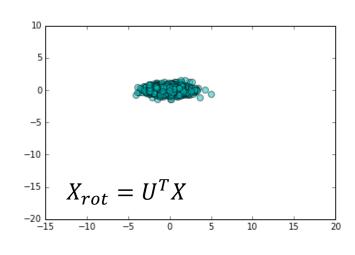
- When input dimensions have similar ranges ...
- o ... and with the right non-linearlity ...
- o ... centering might be enough
 - e.g. in images all dimensions are pixels
 - All pixels have more or less the same ranges

 \circ Juse make sure images have mean 0 ($\mu = 0$)

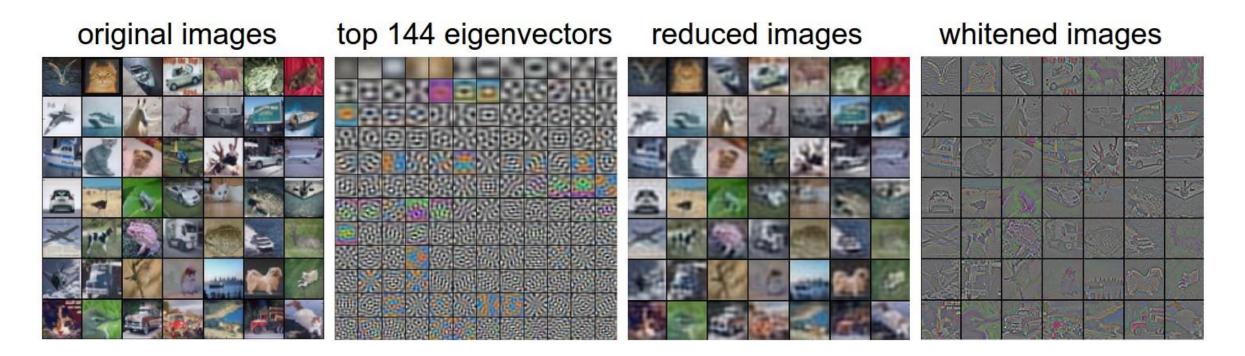
PCA Whitening

- If *C* the covariance matrix of your dataset, compute eigenvalues and eigenvectors with SVD $U, \Sigma, V^T = svd(C)$
- Decorrelate (PCA-ed) dataset by $X_{rot} = U^T X$
 - Subset of eigenvectors $U' = [u_1, \dots, u_q]$ to reduce data dimensions
- Scaling by square root of eigenvalues to whiten data $X_{wht} = X_{rot}/\sqrt{\Sigma}$
- Not used much with Convolutional Neural Nets
 - The zero mean normalization is more important





Example



Images taken from A. Karpathy course website: http://cs231n.github.io/neural-networks-2/

Data augmentation [Krizhevsky2012]

Flíp

Contrast

Random crop

Tint

Orígínal

Batch normalization [loffe2015]

- O Weights change → the distribution of the layer inputs changes per round
 - Covariance shift

Layer l input distribution at (t)

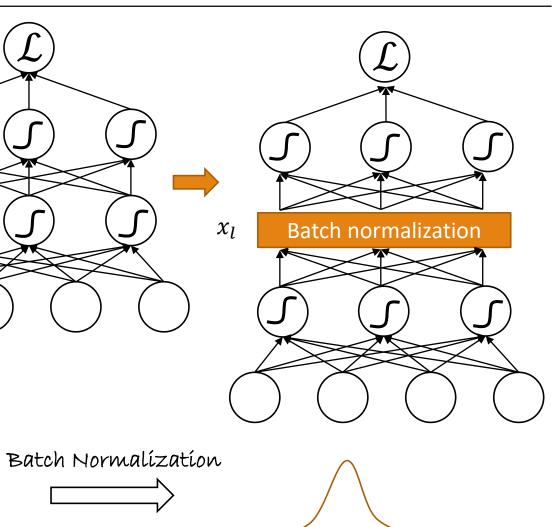
• Normalize the layer inputs with batch normalization

 χ_{l}

Layer l input distribution at (t+0.5)

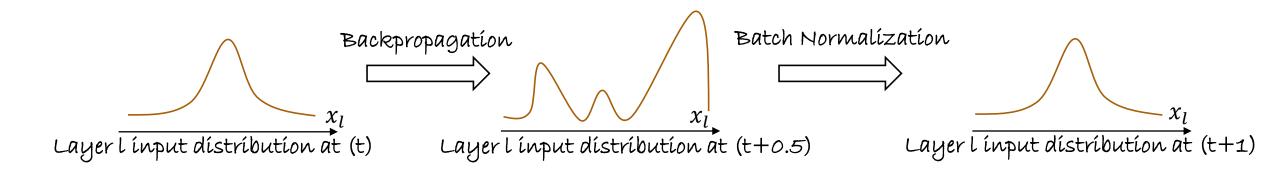
• Roughly speaking, normalize x_l to N(0, 1) and rescale

Backpropagation



Layer l input distribution at (t+1)

Batch normalization - Intuitively



Batch normalization – The algorithm

 $\circ \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ $\circ \sigma_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$ $\circ \ \widehat{x_i} \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \varepsilon}}$ $\circ \ \widehat{y_i} \leftarrow \gamma x_i + \beta$

[compute mini-batch mean]

[compute mini-batch variance]

[normalize input]

[scale and shift input]

Trainable parameters

Batch normalization - Benefits

- \circ Gradients can be stronger \rightarrow higher learning rates \rightarrow faster training
 - Otherwise maybe exploding or vanishing gradients or getting stuck to local minima
- Neurons get activated in a near optimal "regime"
- Better model regularization
 - Neuron activations not deterministic, depend on the batch
 - Model cannot be overconfident

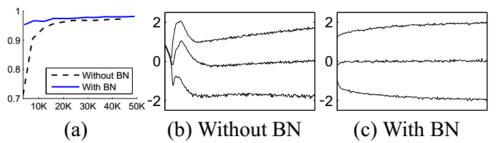


Figure 1: (a) The test accuracy of the MNIST network trained with and without Batch Normalization, vs. the number of training steps. Batch Normalization helps the network train faster and achieve higher accuracy. (b, c) The evolution of input distributions to a typical sigmoid, over the course of training, shown as {15, 50, 85}th percentiles. Batch Normalization makes the distribution more stable and reduces the internal covariate shift.

Regularization

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES & MAX WELLING DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 34 1. The Neural Network

$$a_L(x;\theta_{1,\dots,L}) = h_L(h_{L-1}(\dots h_1(x,\theta_1),\theta_{L-1}),\theta_L)$$

$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \ell(y, a_L(x; \theta_{1,...,L}))$$

3. Optimizing with Gradient Descend based methods $\theta^{(t+1)} = \theta^{(t)} - \eta_t \nabla_{\theta} \mathcal{L}$

- Neural networks typically have thousands, if not millions of parameters
 Usually, the dataset size smaller than the number of parameters
- Overfitting is a grave danger
- Proper weight regularization is crucial to avoid overfitting

$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \ell(y, a_L(x; \theta_{1,\dots,L})) + \lambda \Omega(\theta)$$

- Possible regularization methods
 - ℓ_2 -regularization
 - ℓ_1 -regularization
 - Dropout

ℓ_2 -regularization

• Most important (or most popular) regularization

$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \mathcal{L}(y, a_L(x; \theta_{1,\dots,L})) + \frac{\lambda}{2} \sum_l \|\theta_l\|^2$$

 \circ The ℓ_2 -regularization can pass inside the gradient descend update rule

$$\begin{aligned} \theta^{(t+1)} &= \theta^{(t)} - \eta_t (\nabla_\theta \mathcal{L} + \lambda \theta_l) \Rightarrow \\ \theta^{(t+1)} &= (1 - \lambda \eta_t) \theta^{(t)} - \eta_t \nabla_\theta \mathcal{L} \end{aligned}$$

$$\circ \lambda \text{ is usually about } 10^{-1}, 10^{-2} \qquad \text{``weight decay'', because weights get smaller}}$$

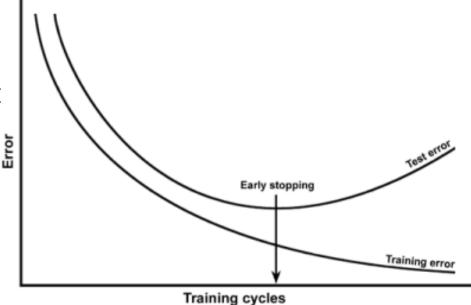
o ℓ_1 -regularization is one of the most important techniques

$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \mathcal{L}(y, a_L(x; \theta_{1,\dots,L})) + \frac{\lambda}{2} \sum_{l} \|\theta_l\|$$

• Also ℓ_1 -regularization passes inside the gradient descend update rule $\theta^{(t+1)} = \theta^{(t)} - \lambda \eta_t \frac{\theta^{(t)}}{|\theta^{(t)}|} - \eta_t \nabla_{\theta} \mathcal{L}$ • ℓ_1 -regularization \rightarrow sparse weights • $\lambda \nearrow \rightarrow$ more weights become 0 sign function

Early stopping

- To tackle overfitting another popular technique is early stopping
- Monitor performance on a separate validation set
- Training the network will decrease training error, as well validation error (although with a slower rate usually)
- Stop when validation error starts increasing
 - This quite likely means the network starts to overfit



Dropout [Srivastava2014]

- During training setting activations randomly to 0
 - $^{
 m o}$ Neurons sampled at random from a Bernoulli distribution with p=0.5
- At test time all neurons are used
 - $^{
 m o}$ Neuron activations reweighted by p
- o Benefits
 - Reduces complex co-adaptations or co-dependencies between neurons
 - No "free-rider" neurons that rely on others
 - Every neuron becomes more robust
 - Decreases significantly overfitting
 - Improves significantly training speed

• Effectively, a different architecture at every training epoch

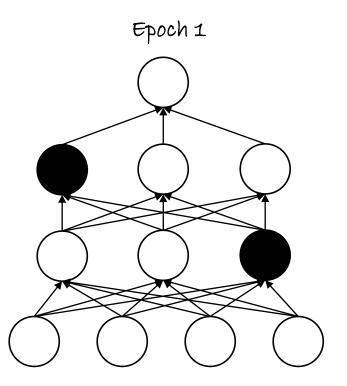
• Similar to model ensembles

Oríginal model

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 40

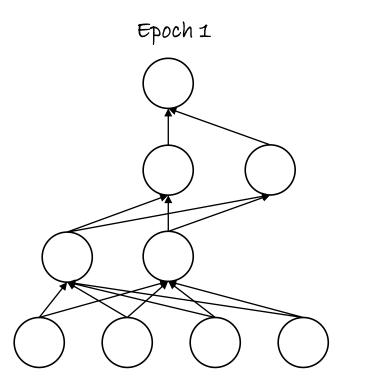
• Effectively, a different architecture at every training epoch

• Similar to model ensembles



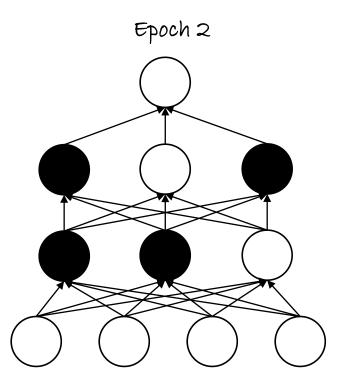
• Effectively, a different architecture at every training epoch

• Similar to model ensembles



• Effectively, a different architecture at every training epoch

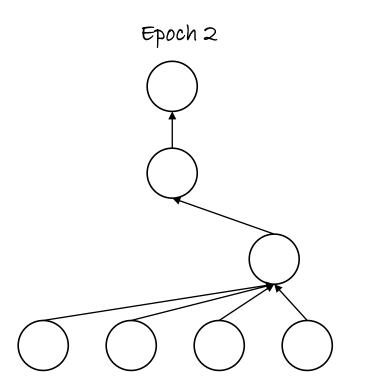
• Similar to model ensembles



UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 43

• Effectively, a different architecture at every training epoch

• Similar to model ensembles



Architectural details

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES & MAX WELLING DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 45 1. The Neural Network

$$a_L(x;\theta_{1,\ldots,L}) = \mathbf{h}_L(\mathbf{h}_{L-1}(\ldots,\mathbf{h}_1(x,\theta_1),\theta_{L-1}),\theta_L)$$

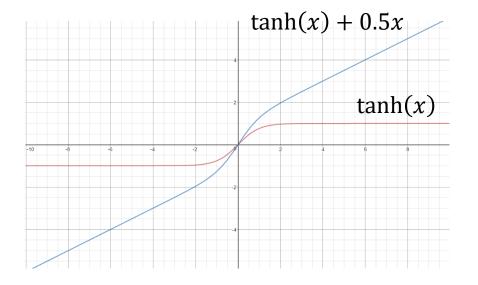
$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \mathcal{L}(y, a_L(x; \theta_{1,...,L}))$$

3. Optimizing with Gradient Descend based methods a(t+1) = a(t)

$$\theta^{(t+1)} = \theta^{(t)} - \eta_t \nabla_\theta \mathcal{L}$$

Sigmoid-like activation functions

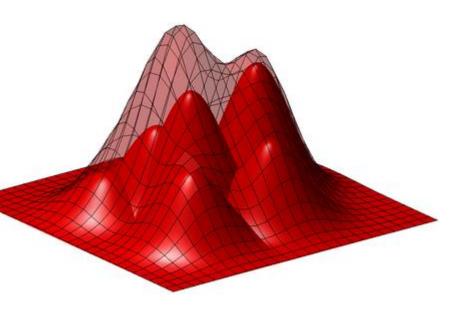
- Straightforward sigmoids not a very good idea
- Symmetric sigmoids converge faster
 - E.g. tanh, returns a(x=0)=0
 - Recommended sigmoid: $a = h(x) = 1.7159 \tanh(\frac{2}{3}x)$
- You can add a linear term to avoid flat areas $a = h(x) = \tanh(x) + \beta x$



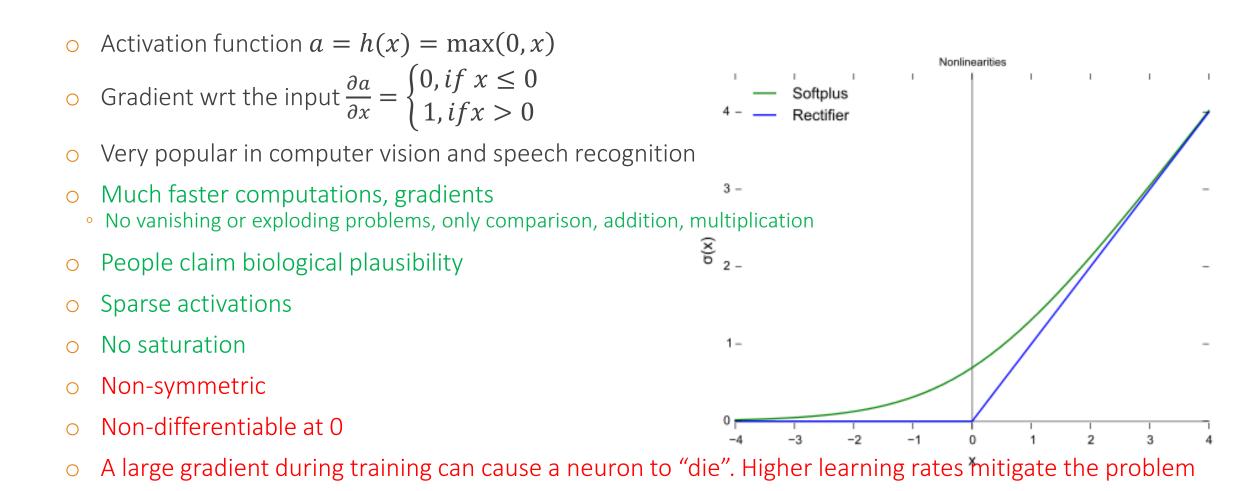
• RBF:
$$a = h(x) = \sum_{j} u_{j} \exp\left(-\beta_{j} (x - w_{j})^{2}\right)$$

• Sigmoid:
$$a = h(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$$

- Sigmoids can cover the full feature space
- RBF's are much more local in the feature space
 - Can be faster to train but with a more limited range
 - Can give better set of basis functions
 - Preferred in lower dimensional spaces

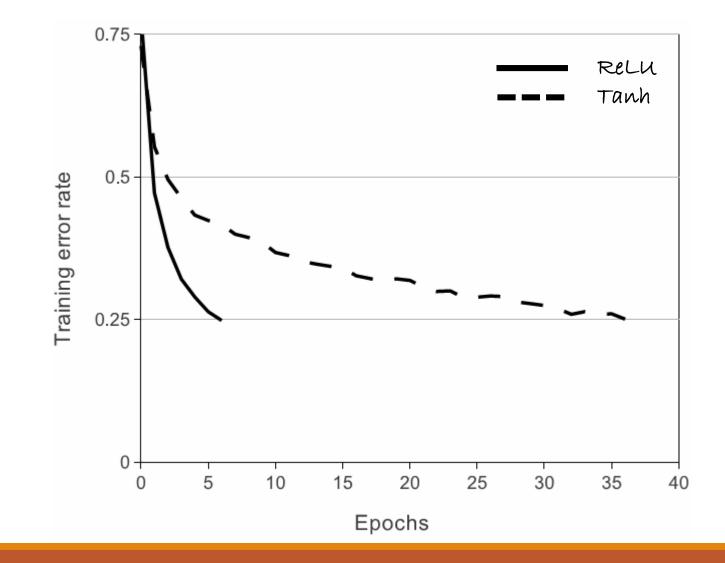


Rectified Linear Unit (ReLU) module [Krizhevsky2012]



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 48

ReLU convergence rate

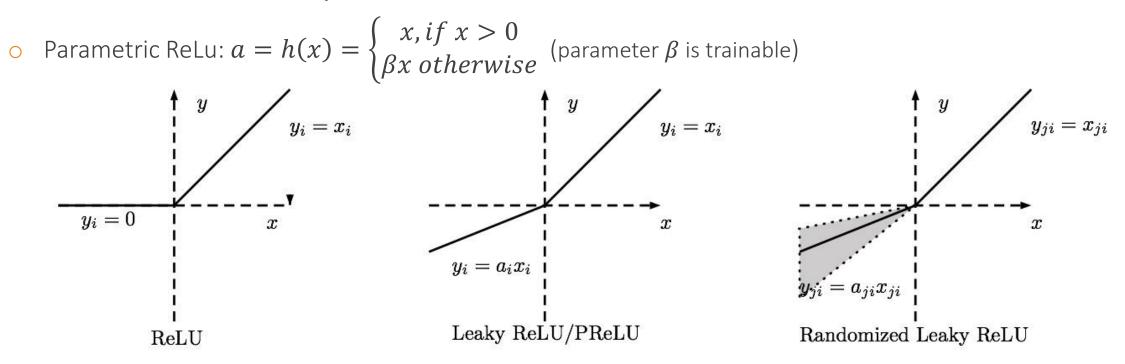


UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 49

Other ReLUs

• Noisy ReLU:
$$a = h(x) = \max(0, x + \varepsilon), \varepsilon \sim N(0, \sigma(x))$$

• Leaky ReLU:
$$a = h(x) = \begin{cases} x, if \ x > 0 \\ 0.01x \ otherwise \end{cases}$$



UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 50

Architectural hyper-parameters

- Number of hidden layers
- Number of neuron in each hidden layer
- Type of activation functions
- Type and amount of regularization

• Tip: Start small \rightarrow increase complexity gradually

• e.g. start with a 2-3 hidden layers

Ο

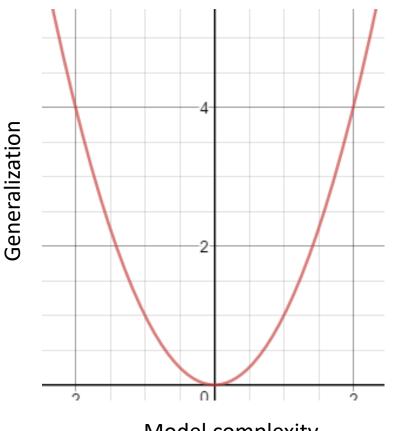
- Add more layers \rightarrow does performance improve?
- Add more neurons \rightarrow does performance improve?

Number of neurons, number of hidden layers

• Regularization is very important, use ℓ_2

Dataset dependent hyperparameters

- Even if with very deep or wide network
- $^{\rm o}$ With strong ℓ_2 -regularization we avoid overfitting



Model complexity (number of neurons)

Learning rate

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES & MAX WELLING DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 53 1. The Neural Network

$$a_L(x;\theta_{1,\dots,L}) = h_L(h_{L-1}(\dots h_1(x,\theta_1),\theta_{L-1}),\theta_L)$$

2. Learning by minimizing empirical error

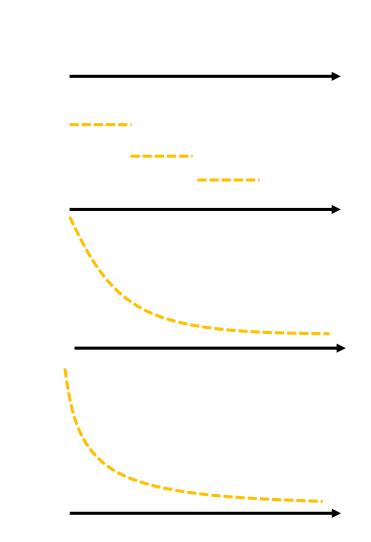
$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \mathcal{L}(y, a_L(x; \theta_{1,\dots,L}))$$

3. Optimizing with Gradient Descend based methods $\theta^{(t+1)} = \theta^{(t)} - \eta_t \nabla_{\theta} \mathcal{L}$

- $_{\rm O}$ The right learning rate η_t very important for fast convergence
 - \circ Too strong ightarrow gradients overshoot and bounce
 - \circ Too weak, ightarrow too small gradients ightarrow slow training
- Learning rate per weight is often advantageous
 - Some weights are near convergence, others not
- o Rule of thumb
 - Learning rate of (shared) weights prop. to square root of share weight connections
- Adaptive learning rates are also possible, based on the errors observed
 [Sompolinsky1995]

Learning rate schedules

- Constant
 - Learning rate remains the same for all epochs
- o Step decay
 - $^{\rm o}$ Decrease (e.g. η_t/T or $\eta_t/T)$ every T number of epochs
- o Inverse decay $\eta_t = \frac{\eta_0}{1 + \varepsilon t}$
- o Exponential decay $\eta_t = \eta_0 e^{-\varepsilon t}$
- o Often step decay preferred
 - simple, intuitive, works well and only a single extra hyper-parameter T (T =2, 10)



Learning rate in practice

- Try several log-spaced values 10^{-1} , 10^{-2} , 10^{-3} , ... on a smaller set
 - Then, you can narrow it down from there around where you get the lowest error
- You can decrease the learning rate every 10 (or some other value) full training set epochs
 - Although this highly depends on your data

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES & MAX WELLING DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 57 1. The Neural Network

$$a_L(x;\theta_{1,\dots,L}) = h_L(h_{L-1}(\dots h_1(x,\theta_1),\theta_{L-1}),\theta_L)$$

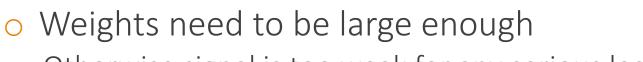
$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \ell(y, a_L(x; \theta_{1,...,L}))$$

3. Optimizing with Gradient Descend based methods

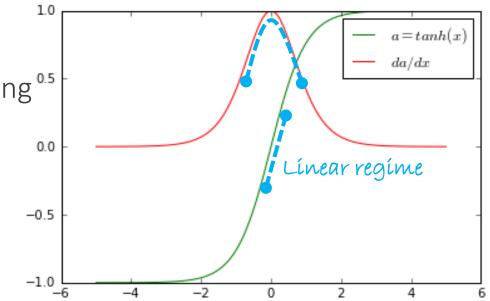
$$\theta^{(t+1)} = \theta^{(t)} - \eta_t \nabla_\theta \mathcal{L}$$

• There are few contradictory requirements

- Weights need to be small enough
 - around origin $(\vec{0})$ for symmetric functions (tanh, sigmoid)
 - When training starts better stimulate activation functions near their linear regime
 - \circ larger gradients ightarrow faster training



• Otherwise signal is too weak for any serious learning^{0.5}



Large gradients

- Weights must be initialized to preserve the variance of the activations during the forward and backward computations
 - Especially for deep learning
 - All neurons operate in their full capacity

Question: Why similar input/output variance?

- Good practice: initialize weights to be asymmetric
 - Don't give save values to all weights (like all $\vec{0}$)
 - \circ In that case all neurons generate same gradient ightarrow no learning
- Generally speaking initialization depends on
 - non-linearities
 - data normalization

- Weights must be initialized to preserve the variance of the activations during the forward and backward computations
 - Especially for deep learning
 - All neurons operate in their full capacity

Question: Why similar input/output variance?

Answer: Because the output of one module is the input to another

- Good practice: initialize weights to be asymmetric
 - Don't give save values to all weights (like all $\vec{0}$)
 - \circ In that case all neurons generate same gradient ightarrow no learning
- Generally speaking initialization depends on
 - non-linearities
 - data normalization

- Weights must be initialized to preserve the variance of the activations during the forward and backward computations
 - Especially for deep learning
 - All neurons operate in their full capacity

Question: Why similar input/output variance?

Answer: Because the output of one module is the input to another

- Good practice: initialize weights to be asymmetric
 - Don't give save values to all weights (like all $\vec{0}$)
 - \circ In that case all neurons generate same gradient ightarrow no learning
- Generally speaking initialization depends on
 - non-linearities
 - data normalization

One way of initializing sigmoid-like neurons

• For tanh initialize weights from
$$\left[-\sqrt{\frac{6}{d_{l-1}+d_l}}, \sqrt{\frac{6}{d_{l-1}+d_l}}\right]$$

• d_{l-1} is the number of input variables to the tanh layer and d_l is the number of the output variables

• For a sigmoid
$$\left[-4 \cdot \sqrt{\frac{6}{d_{l-1}+d_l}}, 4 \cdot \sqrt{\frac{6}{d_{l-1}+d_l}}\right]^{10}$$

• For $a = \theta x$ the variance is $Var(a) = E[x]^{2}Var(\theta) + E[\theta]^{2}Var(x) + Var(x)Var(\theta)$ • Since $E[x] = E[\theta] = 0$ $Var(a) = Var(x)Var(\theta) \approx d \cdot Var(x^i)Var(\theta^i)$ • For $Var(a) = Var(x) \Rightarrow Var(\theta^i) = \frac{1}{d}$ • Draw random weights from $\theta \sim N(0, \sqrt{1/d})$

where d is the number of neurons in the input

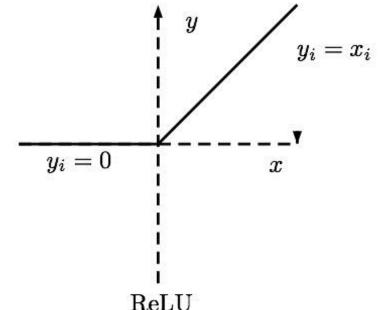
[He2015] initialization for ReLUs

• Unlike sigmoids, ReLUs ground to 0 the linear activations half the time

w~ $N(0,\sqrt{2/d})$

- Double weight variance
 - $^{\circ}$ Compensate for the zero flat-area ightarrow
 - Input and output maintain same variance
 - Very similar to Xavier initialization
- Draw random weights from

where d is the number of neurons in the input



Loss functions

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES & MAX WELLING DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 65 1. The Neural Network

$$a_L(x;\theta_{1,\dots,L}) = h_L(h_{L-1}(\dots h_1(x,\theta_1),\theta_{L-1}),\theta_L)$$

2. Learning by minimizing empirical error

$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \mathcal{L}(y, a_L(x; \theta_{1,...,L}))$$

3. Optimizing with Gradient Descend based methods $\theta^{(t+1)} = \theta^{(t)} - \eta_t \nabla_{\theta} \mathcal{L}$

- Our samples contains only one class
 - There is only one correct answer per sample
- Negative log-likelihood (cross entropy) + Softmax

 $\mathcal{L}(\theta; x, y) = -\sum_{c=1}^{C} y_c \log a_L^c \quad \text{for all classes } c = 1, \dots, C$

• Hierarchical softmax when C is very large

• Hinge loss (aka SVM loss)

$$\mathcal{L}(\theta; x, y) = \sum_{\substack{c=1 \ c \neq y}}^{c} \max(0, a_L^c - a_L^y + 1)$$

• Squared hinge loss

Is it a cat? Is it a horse? ...

Multi-class, multi-label classification

- Each sample can have many correct answers
- Hinge loss and the likes
 - Also sigmoids would also work
- Each output neuron is independent
 - "Does this contain a car, yes or no?"
 - "Does this contain a person, yes or no?"
 - "Does this contain a motorbike, yes or no?"
 - "Does this contain a horse, yes or no?"

- Instead of "Is this a car, motorbike or person?" • p(car|x) = 0.55, p(m/bike|x) = 0.25, p(person|x) = 0.15, p(horse|x) = 0.05
 - p(car|x) + p(m/bike|x) + p(person|x) + p(horse|x) = 1.0

Regression

• The good old Euclidean Loss

$$\mathcal{L}(\theta; x, y) = \frac{1}{2} |y - a_L|_2^2$$

• Or RBF on top of Euclidean loss

$$\mathcal{L}(\theta; x, y) = \sum_{j} u_{j} \exp(-\beta_{j} (y - a_{L})^{2})$$

 \circ Or ℓ_1 distance

$$\mathcal{L}(\theta; x, y) = \sum_{j} |y_j - a_L^j|$$

Even better optimizations

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES & MAX WELLING DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 69 1. The Neural Network

$$a_L(x; \theta_{1,...,L}) = h_L(h_{L-1}(...h_1(x, \theta_1), \theta_{L-1}), \theta_L)$$

2. Learning by minimizing empirical error

$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \mathcal{L}(y, a_L(x; \theta_{1,\dots,L}))$$

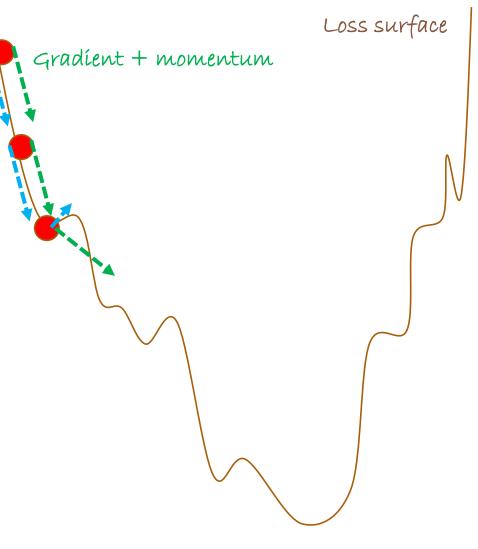
3. Optimizing with Gradient Descend based methods $\theta^{(t+1)} = \theta^{(t)} - \eta_t \nabla_{\theta} \mathcal{L}$

Momentum

- Don't switch gradients all the time
- Maintain "momentum" from previous Gradient parameters

$$\begin{split} u_{\theta} &= \gamma \theta^{(t)} - \eta_t \nabla_{\theta} \mathcal{L} \\ \theta^{(t+1)} &= \theta^{(t)} + u_{\theta} \end{split}$$

- O More robust gradients and learning → faster convergence
- Nice "physics"-based interpretation
 - Instead of updating the position of the "ball", we update the velocity, which updates the position

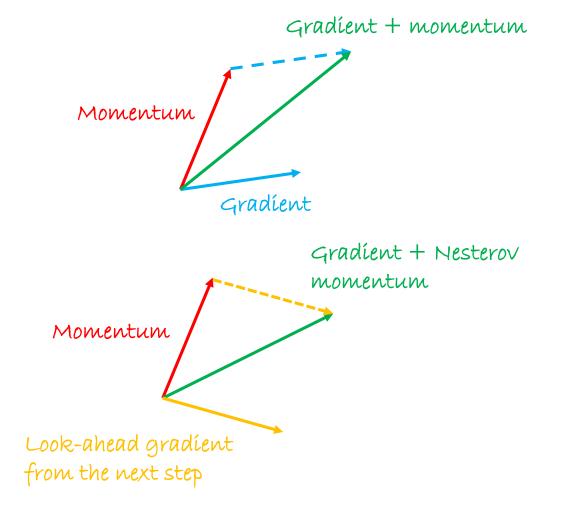


Nesterov Momentum [Sutskever2013]

• Use the future gradient instead of the current gradient

$$u_{\theta} = \gamma \theta^{(t)} - \eta_t \nabla_{\theta} \mathcal{L}$$
$$\theta^{(t+1)} = \theta^{(t)} + u_{\theta}$$

- Better theoretical convergence
- Generally works better with Convolutional Neural Networks



• Normally all weights updated with same "aggressiveness"

- Often some parameters could enjoy more "teaching"
- While others are already about there
- Adapt learning per parameter

$$\theta^{(t+1)} = \theta^{(t)} - H_{\mathcal{L}}^{-1} \eta_t \nabla_{\theta} \mathcal{L}$$

• $H_{\mathcal{L}}$ is the Hessian matrix of \mathcal{L} : second-order derivatives

$$H_{\mathcal{L}}^{ij} = \frac{\partial \mathcal{L}}{\partial \theta_i \partial \theta_j}$$

Second order optimization methods in practice

- o Inverse of Hessian usually very expensive
 - Too many parameters
- Approximating the Hessian, e.g. with the L-BFGS algorithm
 - Keeps memory of gradients to approximate the inverse Hessian
- L-BFGS works alright with Gradient Descend. What about SGD?
- In practice SGD with some good momentum works just fine

Other per-parameter adaptive optimizations

- Adagrad [Duchi2011]
- o RMSprop
- o Adam [Kingma2014]

Adagrad [Duchi2011]

o Schedule

$$\circ m_j = \sum_{\tau} (\nabla_{\theta} \mathcal{L}_j)^2 \implies \theta^{(t+1)} = \theta^{(t)} - \eta_t \frac{\nabla_{\theta} \mathcal{L}}{\sqrt{m} + \varepsilon}$$

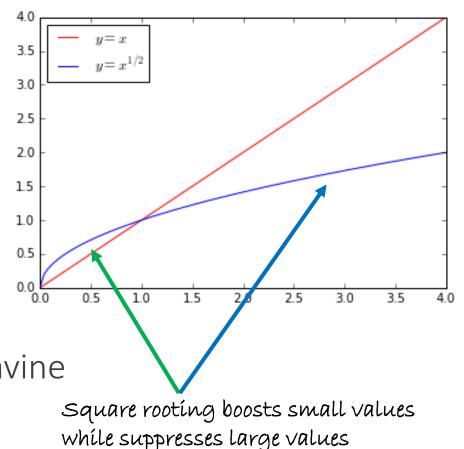
• ε is a small number to avoid division with 0

• Gradients become gradually smaller and smaller

RMSprop

• Schedule • $m_j = \alpha \sum_{\tau=1}^{t-1} (\nabla_{\theta}^{(t)} \mathcal{L}_j)^2 + (1 - \alpha) \nabla_{\theta}^{(t)} \mathcal{L}_j \implies$ • $\theta^{(t+1)} = \theta^{(t)} - \eta_t \frac{\nabla_{\theta} \mathcal{L}}{\sqrt{m+\varepsilon}}$

- Moving average of the squared gradients
 Compared to Adagrad
- o Large gradients, e.g. too "noisy" loss surface
 - Updates are tamed
- o Small gradients, e.g. stuck in flat loss surface ravine
 - Updates become more aggressive



Adam [Kingma2014]

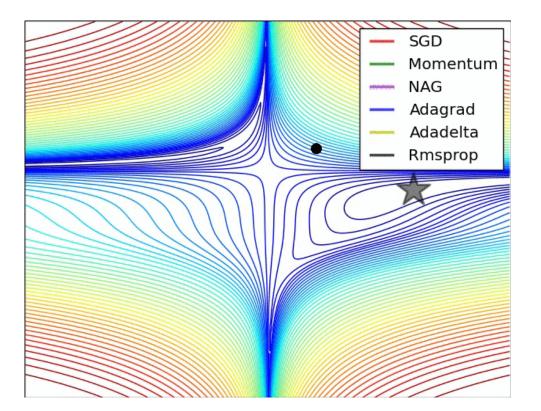
• One of the most popular learning algorithms

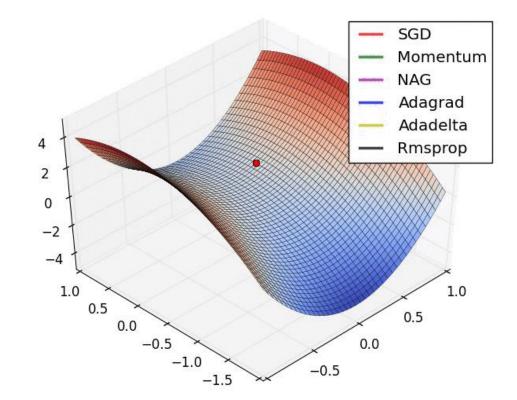
$$m_{j} = \sum_{\tau} (\nabla_{\theta} \mathcal{L}_{j})^{2}$$
$$\theta^{(t+0.5)} = \beta_{1} \theta^{(t)} + (1 - \beta_{1}) \nabla_{\theta} \mathcal{L}$$
$$v^{(t+0.5)} = \beta_{2} v^{(t)} + (1 - \beta_{2}) m$$
$$\theta^{(t+1)} = \theta^{(t)} - \eta_{t} \frac{\theta^{(t+0.5)}}{\sqrt{v^{(t+0.5)}} + \varepsilon}$$

• Similar to RMSprop, but with momentum

$$_{\odot}$$
 Recommended values: $eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$

Visual overview





Pícture credit: <u>Alec Radford</u>

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 78

Learning – not computing – the gradients

- Learning to learn by gradient descent by gradient descent
 [Andrychowicz2016]
- $\circ \ \theta^{(t+1)} = \theta^{(t)} + g_t(\nabla_{\!\theta}\mathcal{L}, \varphi)$
- o g_t is an "optimizer" with its own parameters ϕ

• Implemented as a recurrent network

Good practice

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES & MAX WELLING DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 80 • Preprocess the data to at least have 0 mean

Initialize weights based on activations functions
 For ReLU Xavier or HeICCV2015 initialization

 \circ Always use ℓ_2 -regularization and dropout

• Use batch normalization

Babysitting Deep Nets

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES & MAX WELLING DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 81 1. The Neural Network

$$a_L(x;\theta_{1,\dots,L}) = h_L(h_{L-1}(\dots h_1(x,\theta_1),\theta_{L-1}),\theta_L)$$

2. Learning by minimizing empirical error

$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \mathcal{L}(y, a_L(x; \theta_{1,\dots,L}))$$

3. Optimizing with Gradient Descend based methods $\theta^{(t+1)} = \theta^{(t)} - \eta_t \nabla_{\theta} \mathcal{L}$

- Always check your gradients if not computed automatically
- Check that in the first round you get a random loss
- Check network with few samples
 - Turn off regularization. You should predictably overfit and have a 0 loss
 - Turn or regularization. The loss should increase
- Have a separate validation set
 - Compare the curve between training and validation sets
 - There should be a gap, but not too large

Summary

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES & MAX WELLING DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 83

- How to define our model and optimize it in practice
- Data preprocessing and normalization
- o Optimization methods
- Regularizations
- Architectures and architectural hyper-parameters
- o Learning rate
- Weight initializations
- Good practices

Reading material & references

o http://www.deeplearningbook.org/

• Part II: Chapter 7, 8

[Andrychowicz2016] Andrychowicz, Denil, Gomez, Hoffman, Pfau, Schaul, de Freitas, Learning to learn by gradient descent by gradient descent, arXiv, 2016
[He2015] He, Zhang, Ren, Sun. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, ICCV, 2015
[Ioffe2015] Ioffe, Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv, 2015
[Kingma2014] Kingma, Ba. Adam: A Method for Stochastic Optimization, arXiv, 2014
[Srivastava2014] Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR, 2014
[Sutskever2013] Sutskever, Martens, Dahl, Hinton. On the importance of initialization and momentum in deep learning, JMLR, 2013
[Bengio2012] Bengio. Practical recommendations for gradient-based training of deep architectures, arXiv, 2012
[Krizhevsky2012] Krizhevsky, Hinton. ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012
[Duchi2011] Duchi, Hazan, Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, JMLR, 2011
[Glorot2010] Glorot, Bengio. Understanding the difficulty of training deep feedforward neural networks, JMLR, 2010
[LeCun2002]

Next lecture

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES & MAX WELLING DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 85 What are the Convolutional Neural Networks?
Why are they important in Computer Vision?
Differences from standard Neural Networks
How to train a Convolutional Neural Network?