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Lecture 3: Deeper into Deep Learning and Optimizations
Deep Learning @ UvA
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o Machine learning paradigm for neural networks

o Backpropagation algorithm, backbone for training neural networks

o Neural network == modular architecture

o Visited different modules, saw how to implement and check them

Previous lecture
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o How to define our model and optimize it in practice

o Data preprocessing and normalization

o Optimization methods

o Regularizations

o Architectures and architectural hyper-parameters

o Learning rate

o Weight initializations

o Good practices

Lecture overview
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Deeper into
Neural Networks &
Deep Neural Nets
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A Neural/Deep Network in a nutshell

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods
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SGD vs GD

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods
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Backpropagation again

o Step 1. Compute forward propagations for all layers recursively

𝑎𝑙 = ℎ𝑙 𝑥𝑙 and 𝑥𝑙+1 = 𝑎𝑙

o Step 2. Once done with forward propagation, follow the reverse path. 
◦ Start from the last layer and for each new layer compute the gradients

◦ Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients 
𝜕ℒ

𝜕𝜃𝑙
with Stochastic Gradient Descend to train

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1
𝜕𝑥𝑙+1

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1

𝜕ℒ

𝜕𝜃𝑙
=
𝜕𝑎𝑙
𝜕𝜃𝑙

⋅
𝜕ℒ

𝜕𝑎𝑙

𝑇
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o Often loss surfaces are
◦ non-quadratic

◦ highly non-convex

◦ very high-dimensional

o Datasets are typically really large to compute complete gradients

o No real guarantee that 
◦ the final solution will be good

◦ we converge fast to final solution

◦ or that there will be convergence 

Still, backpropagation can be slow



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 9

o Stochastically sample “mini-batches” from dataset 𝐷
◦ The size of 𝐵𝑗 can contain even just 1 sample

o Much faster than Gradient Descend

o Results are often better

o Also suitable for datasets that change over time

o Variance of gradients increases when batch size decreases

Stochastic Gradient Descend (SGD)

𝜃(𝑡+1) = 𝜃(𝑡) −
𝜂𝑡
|𝐵𝑗|


𝑖 ∈ 𝐵𝑗

𝛻𝜃ℒ𝑖

𝐵𝑗 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝐷)
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SGD is often better

Current solution

Full GD gradient

New GD solution

Noisy SGD gradient

Best GD solution

Best SGD solution

• No guarantee that this is what
is going to always happen.

• But the noisy SGC gradients 
can help some times escaping 
local optima

Loss surface
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SGD is often better

o (A bit) Noisy gradients act as regularization

o Gradient Descend  Complete gradients

o Complete gradients fit optimally the (arbitrary) data we have, not the 
distribution that generates them
◦ All training samples are the “absolute representative” of the input distribution

◦ Test data will be no different than training data

◦ Suitable for traditional optimization problems: “find optimal route”

◦ But for ML we cannot make this assumption  test data are always different

o Stochastic gradients  sampled training data sample roughly 
representative gradients
◦ Model does not overfit to the particular training samples
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SGD is faster

Gradient
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SGD is faster

Gradient

10x

What is our 
gradient now?
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SGD is faster

10x

What is our 
gradient now?

Gradient
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o Of course in real situations data do not replicate

o However, after a sizeable amount of data there are clusters of data that 
are similar

o Hence, the gradient is approximately alright

o Approximate alright is great, is even better in many cases actually

SGD is faster
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o Often datasets are not “rigid”

o Imagine Instagram
◦ Let’s assume 1 million of new images uploaded per week and 

we want to build a “cool picture” classifier
◦ Should “cool pictures” from the previous year have the same as 

much influence?
◦ No, the learning machine should track these changes

o With GD these changes go undetected, as results are 
averaged by the many more “past” samples

◦ Past “over-dominates”

o A properly implemented SGD can track changes much 
better and give better models

◦ [LeCun2002]

SGD for dynamically changed datasets

Popular today

Popular in 2014

Popular in 2010
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o Applicable only with SGD

o Choose samples with maximum information content

o Mini-batches should contain examples from different classes
◦ As different as possible

o Prefer samples likely to generate larger errors
◦ Otherwise gradients will be small  slower learning
◦ Check the errors from previous rounds and prefer “hard examples”
◦ Don’t overdo it though :P, beware of outliers

o In practice, split your dataset into mini-batches
◦ Each mini-batch is as class-divergent and rich as possible
◦ New epoch  to be safe new batches & new, randomly shuffled examples

Shuffling examples
Dataset

Shuffling 
at epoch t

Shuffling 
at epoch t+1
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o Conditions of convergence well understood

o Acceleration techniques can be applied
◦ Second order (Hessian based) optimizations are possible

◦ Measuring not only gradients, but also curvatures of the loss surface

o Simpler theoretical analysis on weight dynamics and convergence rates

Advantages of Gradient Descend batch learning
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o SGD is preferred to Gradient Descend

o Training is orders faster
◦ In real datasets Gradient Descend is not even realistic

o Solutions generalize better
◦ More efficient  larger datasets

◦ Larger datasets  better generalization

o How many samples per mini-batch?
◦ Hyper-parameter, trial & error

◦ Usually between 32-256 samples

In practice
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Data preprocessing & 
normalization

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods
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o Center data to be roughly 0
◦ Activation functions usually “centered” around 0

◦ Convergence usually faster

◦ Otherwise bias on gradient direction might slow down learning

Data pre-processing

ReLU tanh(𝑥) 𝜎(𝑥)
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o Scale input variables to have similar diagonal covariances 𝑐𝑖 = σ𝑗(𝑥𝑖
(𝑗)
)2

◦ Similar covariancesmore balanced rate of learning for different weights

◦ Rescaling to 1 is a good choice, unless some dimensions are less important

Data pre-processing

𝑥1, 𝑥2, 𝑥3much different covariances

𝜃1

𝜃2

𝑥 = 𝑥1, 𝑥2, 𝑥3 𝑇, 𝜃 = 𝜃1, 𝜃2, 𝜃3 𝑇 , 𝑎 = tanh(𝜃Τ𝑥)

𝜃3
Generated gradients ቚ

dℒ

𝑑𝜃 𝑥1,𝑥2,𝑥3
: much different

Gradient update harder: 𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡

𝑑ℒ/𝑑θ1

𝑑ℒ/𝑑θ2

𝑑ℒ/𝑑θ3
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o Input variables should be as decorrelated as possible
◦ Input variables are “more independent”

◦ Network is forced to find non-trivial correlations between inputs

◦ Decorrelated inputs  Better optimization

◦ Obviously not the case when inputs are by definition correlated (sequences)

o Extreme case
◦ extreme correlation (linear dependency) might cause problems [CAUTION]

Data pre-processing
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o Input variables follow a Gaussian distribution (roughly)

o In practice: 
◦ from training set compute mean and standard deviation

◦ Then subtract the mean from training samples

◦ Then divide the result by the standard deviation

Normalization: 𝑁 𝜇, 𝜎2 = 𝑁 0, 1

𝑥

𝑥 − 𝜇

𝑥 − 𝜇

𝜎
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o Instead of “per-dimension”  all input dimensions simultaneously

o If dimensions have similar values (e.g. pixels in natural images)
◦ Compute one 𝜇, 𝜎2 instead of as many as the input variables

◦ Or the per color channel pixel average/variance

𝜇𝑟𝑒𝑑 , 𝜎𝑟𝑒𝑑
2 , 𝜇𝑔𝑟𝑒𝑒𝑛, 𝜎𝑔𝑟𝑒𝑒𝑛

2 , 𝜇𝑏𝑙𝑢𝑒, 𝜎𝑏𝑙𝑢𝑒
2

𝑁 𝜇, 𝜎2 = 𝑁 0, 1 − Making things faster
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o When input dimensions have similar ranges …

o … and with the right non-linearlity …

o … centering might be enough
◦ e.g. in images all dimensions are pixels

◦ All pixels have more or less the same ranges

o Juse make sure images have mean 0 (𝜇 = 0)

Even simpler: Centering the input
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o If 𝐶 the covariance matrix of your dataset, compute 
eigenvalues and eigenvectors with SVD 

𝑈, Σ, 𝑉𝑇 = 𝑠𝑣𝑑(𝐶)

o Decorrelate (PCA-ed) dataset by
𝑋𝑟𝑜𝑡 = 𝑈𝑇𝑋

◦ Subset of eigenvectors 𝑈′ = [𝑢1, … , 𝑢𝑞] to reduce data dimensions

o Scaling by square root of eigenvalues to whiten data

𝑋𝑤ℎ𝑡 = 𝑋𝑟𝑜𝑡/ Σ

o Not used much with Convolutional Neural Nets
◦ The zero mean normalization is more important

PCA Whitening

𝑋𝑟𝑜𝑡 = 𝑈𝑇𝑋

𝑋𝑤ℎ𝑡 = 𝑋𝑟𝑜𝑡/ Σ
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Example

Images taken from A. Karpathy course website: http://cs231n.github.io/neural-networks-2/
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Data augmentation [Krizhevsky2012]

Original

Flip Random crop

Contrast Tint
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o Weights change  the 
distribution of the layer inputs 
changes per round
◦ Covariance shift

o Normalize the layer inputs with 
batch normalization
◦ Roughly speaking, normalize 𝑥𝑙 to 
𝑁(0, 1) and rescale

Batch normalization [Ioffe2015]

𝑥𝑙
Layer l input distribution at (t) Layer l input distribution at (t+0.5) Layer l input distribution at (t+1)

Backpropagation

𝑥𝑙 𝑥𝑙

Batch Normalization

𝑥𝑙

ℒ

𝑥𝑙

ℒ

Batch normalization
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Batch normalization - Intuitively

𝑥𝑙
Layer l input distribution at (t) Layer l input distribution at (t+0.5) Layer l input distribution at (t+1)

Backpropagation

𝑥𝑙 𝑥𝑙

Batch Normalization
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Batch normalization – The algorithm

o 𝜇ℬ ←
1

𝑚
σ𝑖=1
𝑚 𝑥𝑖 [compute mini-batch mean]

o 𝜎ℬ ←
1

𝑚
σ𝑖=1
𝑚 𝑥𝑖 − 𝜇ℬ

2 [compute mini-batch variance]

o ෝ𝑥𝑖 ←
𝑥𝑖−𝜇ℬ

𝜎ℬ
2+𝜀

[normalize input]

o ෝ𝑦𝑖 ← 𝛾𝑥𝑖 + 𝛽 [scale and shift input]

Trainable parameters
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o Gradients can be stronger  higher learning rates  faster training
◦ Otherwise maybe exploding or vanishing gradients or getting stuck to local minima

o Neurons get activated in a near optimal “regime”

o Better model regularization
◦ Neuron activations not deterministic,

depend on the batch

◦ Model cannot be overconfident

Batch normalization - Benefits
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Regularization

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℓ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods
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o Neural networks typically have thousands, if not millions of parameters
◦ Usually, the dataset size smaller than the number of parameters

o Overfitting is a grave danger

o Proper weight regularization is crucial to avoid overfitting

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℓ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L ) + 𝜆Ω(𝜃)

o Possible regularization methods
◦ ℓ2-regularization
◦ ℓ1-regularization
◦ Dropout

Regularization
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o Most important (or most popular) regularization

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L ) +
𝜆

2


𝑙
𝜃𝑙

2

o The ℓ2-regularization can pass inside the gradient descend update rule

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡 𝛻𝜃ℒ + 𝜆𝜃𝑙 ⟹

𝜃 𝑡+1 = 1 − 𝜆𝜂𝑡 𝜃
𝑡 − 𝜂𝑡𝛻𝜃ℒ

o 𝜆 is usually about 10−1, 10−2

ℓ2-regularization 

“Weight decay”, because 
weights get smaller
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o ℓ1-regularization is one of the most important techniques

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L ) +
𝜆

2


𝑙
𝜃𝑙

o Also ℓ1-regularization passes inside the gradient descend update rule

𝜃 𝑡+1 = 𝜃 𝑡 − 𝜆𝜂𝑡
𝜃 𝑡

|𝜃 𝑡 |
− 𝜂𝑡𝛻𝜃ℒ

o ℓ1-regularization  sparse weights
◦ 𝜆 ↗  more weights become 0

ℓ1-regularization 

Sign function
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o To tackle overfitting another popular technique is early stopping

o Monitor performance on a separate validation set

o Training the network will decrease training error, as well validation error 
(although with a slower rate usually)

o Stop when validation error starts increasing
◦ This quite likely means the network starts to overfit

Early stopping
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o During training setting activations randomly to 0
◦ Neurons sampled at random from a Bernoulli distribution with 𝑝 = 0.5

o At test time all neurons are used
◦ Neuron activations reweighted by 𝑝

o Benefits
◦ Reduces complex co-adaptations or co-dependencies between neurons

◦ No “free-rider” neurons that rely on others

◦ Every neuron becomes more robust

◦ Decreases significantly overfitting

◦ Improves significantly training speed

Dropout [Srivastava2014]
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o Effectively, a different architecture at every training epoch
◦ Similar to model ensembles

Dropout

Original model
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o Effectively, a different architecture at every training epoch
◦ Similar to model ensembles

Dropout

Epoch 1
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o Effectively, a different architecture at every training epoch
◦ Similar to model ensembles

Dropout

Epoch 1
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o Effectively, a different architecture at every training epoch
◦ Similar to model ensembles

Dropout

Epoch 2
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o Effectively, a different architecture at every training epoch
◦ Similar to model ensembles

Dropout

Epoch 2
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Architectural details

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods
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o Straightforward sigmoids not a very good idea

o Symmetric sigmoids converge faster
◦ E.g. tanh, returns a(x=0)=0

◦ Recommended sigmoid: 𝑎 = ℎ 𝑥 = 1.7159 tanh(
2

3
𝑥)

o You can add a linear term to avoid flat areas
𝑎 = ℎ 𝑥 = tanh 𝑥 + 𝛽𝑥

Sigmoid-like activation functions

tanh 𝑥 + 0.5𝑥

tanh 𝑥
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o RBF: 𝑎 = ℎ 𝑥 = σ𝑗 𝑢𝑗 exp −𝛽𝑗 𝑥 − 𝑤𝑗
2

o Sigmoid: 𝑎 = ℎ 𝑥 = 𝜎 𝑥 =
1

1+𝑒−𝑥

o Sigmoids can cover the full feature space

o RBF’s are much more local in the feature space
◦ Can be faster to train but with a more limited range

◦ Can give better set of basis functions

◦ Preferred in lower dimensional spaces

RBFs vs “Sigmoids”
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o Activation function 𝑎 = ℎ(𝑥) = max 0, 𝑥

o Gradient wrt the input 
𝜕𝑎

𝜕𝑥
= ቊ

0, 𝑖𝑓 𝑥 ≤ 0
1, 𝑖𝑓𝑥 > 0

o Very popular in computer vision and speech recognition

o Much faster computations, gradients
◦ No vanishing or exploding problems, only comparison, addition, multiplication 

o People claim biological plausibility

o Sparse activations

o No saturation

o Non-symmetric

o Non-differentiable at 0

o A large gradient during training can cause a neuron to “die”. Higher learning rates mitigate the problem

Rectified Linear Unit (ReLU) module [Krizhevsky2012]
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ReLU convergence rate

ReLU

Tanh
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o Soft approximation (softplus): 𝑎 = ℎ(𝑥) = ln 1 + 𝑒𝑥

o Noisy ReLU: 𝑎 = ℎ 𝑥 = max 0, x + ε , ε~𝛮(0, σ(x))

o Leaky ReLU: 𝑎 = ℎ 𝑥 = ቊ
𝑥, 𝑖𝑓 𝑥 > 0

0.01𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

o Parametric ReLu: 𝑎 = ℎ 𝑥 = ቊ
𝑥, 𝑖𝑓 𝑥 > 0

𝛽𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(parameter 𝛽 is trainable)

Other ReLUs
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o Number of hidden layers

o Number of neuron in each hidden layer

o Type of activation functions

o Type and amount of regularization

Architectural hyper-parameters
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o Dataset dependent hyperparameters

o Tip: Start small increase complexity gradually
◦ e.g. start with a 2-3 hidden layers

◦ Add more layers  does performance improve?

◦ Add more neurons  does performance improve?

o Regularization is very important, use ℓ2
◦ Even if with very deep or wide network

◦ With strong ℓ2-regularization we avoid overfitting

Number of neurons, number of hidden layers

G
en

er
al

iz
at

io
n

Model complexity
(number of neurons)
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Learning rate

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods
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o The right learning rate 𝜂𝑡 very important for fast convergence
◦ Too strong  gradients overshoot and bounce

◦ Too weak,  too small gradients  slow training

o Learning rate per weight is often advantageous
◦ Some weights are near convergence, others not

o Rule of thumb
◦ Learning rate of (shared) weights prop. to square root of share weight connections

o Adaptive learning rates are also possible, based on the errors observed
◦ [Sompolinsky1995]

Learning rate
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o Constant
◦ Learning rate remains the same for all epochs

o Step decay
◦ Decrease (e.g. 𝜂𝑡/𝑇 or 𝜂𝑡/𝑇) every T number of epochs

o Inverse decay 𝜂𝑡 =
𝜂0

1+𝜀𝑡

o Exponential decay 𝜂𝑡 = 𝜂0𝑒
−𝜀𝑡

o Often step decay preferred
◦ simple, intuitive, works well and only a

single extra hyper-parameter 𝑇 (𝑇 =2, 10)

Learning rate schedules
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o Try several log-spaced values 10−1, 10−2, 10−3, … on a smaller set
◦ Then, you can narrow it down from there around where you get the lowest error

o You can decrease the learning rate every 10 (or some other value) full 
training set epochs
◦ Although this highly depends on your data

Learning rate in practice
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Weight initialization

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℓ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods
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o There are few contradictory requirements

o Weights need to be small enough
◦ around origin (𝟎) for symmetric functions (tanh, sigmoid)

◦ When training starts better stimulate activation functions near their linear regime

◦ larger gradients  faster training

o Weights need to be large enough
◦ Otherwise signal is too weak for any serious learning

Weight initialization

Linear regime

Large gradients

Linear regime

Large gradients
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o Weights must be initialized to preserve the variance of the activations during 
the forward and backward computations

◦ Especially for deep learning
◦ All neurons operate in their full capacity

Question: Why similar input/output variance?

o Good practice: initialize weights to be asymmetric
◦ Don’t give save values to all weights (like all 𝟎)
◦ In that case all neurons generate same gradient  no learning

o Generally speaking initialization depends on
◦ non-linearities
◦ data normalization

Weight initialization
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o Weights must be initialized to preserve the variance of the activations during 
the forward and backward computations

◦ Especially for deep learning
◦ All neurons operate in their full capacity

Question: Why similar input/output variance?

Answer: Because the output of one module is the input to another

o Good practice: initialize weights to be asymmetric
◦ Don’t give save values to all weights (like all 𝟎)
◦ In that case all neurons generate same gradient  no learning

o Generally speaking initialization depends on
◦ non-linearities
◦ data normalization

Weight initialization
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o Weights must be initialized to preserve the variance of the activations during 
the forward and backward computations

◦ Especially for deep learning
◦ All neurons operate in their full capacity

Question: Why similar input/output variance?

Answer: Because the output of one module is the input to another

o Good practice: initialize weights to be asymmetric
◦ Don’t give save values to all weights (like all 𝟎)
◦ In that case all neurons generate same gradient  no learning

o Generally speaking initialization depends on
◦ non-linearities
◦ data normalization

Weight initialization
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o For tanh initialize weights from −
6

𝑑𝑙−1+𝑑𝑙
,

6

𝑑𝑙−1+𝑑𝑙

◦ 𝑑𝑙−1 is the number of input variables to the tanh layer and 𝑑𝑙 is the number of the 
output variables

o For a sigmoid −4 ∙
6

𝑑𝑙−1+𝑑𝑙
, 4 ∙

6

𝑑𝑙−1+𝑑𝑙

One way of initializing sigmoid-like neurons

Linear regime

Large gradients
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o For 𝑎 = 𝜃𝑥 the variance is
𝑉𝑎𝑟 𝑎 = 𝐸 𝑥 2𝑉𝑎𝑟 𝜃 + E 𝜃 2𝑉𝑎𝑟 𝑥 + 𝑉𝑎𝑟 𝑥 𝑉𝑎𝑟 𝜃

o Since 𝐸 𝑥 = 𝐸 𝜃 = 0

𝑉𝑎𝑟 𝑎 = 𝑉𝑎𝑟 𝑥 𝑉𝑎𝑟 𝜃 ≈ 𝑑 ⋅ 𝑉𝑎𝑟 𝑥𝑖 𝑉𝑎𝑟 𝜃𝑖

o For 𝑉𝑎𝑟 𝑎 = 𝑉𝑎𝑟 𝑥 ⇒ 𝑉𝑎𝑟 𝜃𝑖 =
1

𝑑

o Draw random weights from

𝜃~𝑁 0, 1/𝑑

where 𝑑 is the number of neurons in the input

Xavier initialization [Glorot2010]
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o Unlike sigmoids, ReLUs ground to 0 the linear activations half the 
time

o Double weight variance
◦ Compensate for the zero flat-area 

◦ Input and output maintain same variance

◦ Very similar to Xavier initialization

o Draw random weights from

w~𝑁 0, 2/𝑑

where 𝑑 is the number of neurons in the input

[He2015] initialization for ReLUs
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Loss functions

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods
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o Our samples contains only one class
◦ There is only one correct answer per sample

o Negative log-likelihood (cross entropy) + Softmax

ℒ 𝜃; 𝑥, 𝑦 = −σ𝑐=1
𝐶 𝑦𝑐 log 𝑎𝐿

𝑐 for all classes 𝑐 = 1,… , 𝐶

o Hierarchical softmax when C is very large

o Hinge loss (aka SVM loss)

ℒ 𝜃; 𝑥, 𝑦 = 
𝑐=1
𝑐≠𝑦

𝐶

max(0, 𝑎𝐿
𝑐 − 𝑎𝐿

𝑦
+ 1)

o Squared hinge loss

Multi-class classification

Is it a cat? Is it a horse? …
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o Each sample can have many correct answers

o Hinge loss and the likes
◦ Also sigmoids would also work

o Each output neuron is independent
◦ “Does this contain a car, yes or no?“
◦ “Does this contain a person, yes or no?“
◦ “Does this contain a motorbike, yes or no?“
◦ “Does this contain a horse, yes or no?“

o Instead of “Is this a car, motorbike or person?”
◦ 𝑝 𝑐𝑎𝑟 𝑥) = 0.55, 𝑝 𝑚/𝑏𝑖𝑘𝑒 𝑥) = 0.25, 𝑝 𝑝𝑒𝑟𝑠𝑜𝑛 𝑥) = 0.15, 𝑝 ℎ𝑜𝑟𝑠𝑒 𝑥) = 0.05

◦ 𝑝 𝑐𝑎𝑟 𝑥) + 𝑝 𝑚/𝑏𝑖𝑘𝑒 𝑥) + 𝑝 𝑝𝑒𝑟𝑠𝑜𝑛 𝑥) + 𝑝 ℎ𝑜𝑟𝑠𝑒 𝑥) = 1.0

Multi-class, multi-label classification
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o The good old Euclidean Loss

ℒ 𝜃; 𝑥, 𝑦 =
1

2
|𝑦 − 𝑎𝐿|2

2

o Or RBF on top of Euclidean loss

ℒ 𝜃; 𝑥, 𝑦 =
𝑗
𝑢𝑗 exp(−𝛽𝑗(𝑦 − 𝑎𝐿)

2)

o Or ℓ1 distance

ℒ 𝜃; 𝑥, 𝑦 =

𝑗

|𝑦𝑗 − 𝑎𝐿
𝑗
|

Regression
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Even better 
optimizations

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods
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o Don’t switch gradients all the time

o Maintain “momentum” from previous 
parameters

o More robust gradients and learning 
faster convergence

o Nice “physics”-based interpretation
◦ Instead of updating the position of the “ball”, we 

update the velocity, which updates the position

Momentum

𝜃(𝑡+1) = 𝜃(𝑡) + 𝑢𝜃

𝑢𝜃 = 𝛾𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

Loss surface

Gradient

Gradient + momentum
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o Use the future gradient instead of 
the current gradient

o Better theoretical convergence

o Generally works better with 
Convolutional Neural Networks

Nesterov Momentum [Sutskever2013]

𝜃(𝑡+1) = 𝜃(𝑡) + 𝑢𝜃

𝑢𝜃 = 𝛾𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ
Gradient

Gradient + momentum

Momentum

Look-ahead gradient 
from the next step

Momentum

Gradient + Nesterov 
momentum
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o Normally all weights updated with same “aggressiveness”
◦ Often some parameters could enjoy more “teaching”

◦ While others are already about there

o Adapt learning per parameter
𝜃(𝑡+1) = 𝜃(𝑡) − 𝐻ℒ

−1𝜂𝑡𝛻𝜃ℒ

o 𝐻ℒ is the Hessian matrix of ℒ: second-order derivatives

𝐻ℒ
𝑖𝑗
=

𝜕ℒ

𝜕𝜃𝑖𝜕𝜃𝑗

Second order optimization
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o Inverse of Hessian usually very expensive
◦ Too many parameters

o Approximating the Hessian, e.g. with the L-BFGS algorithm
◦ Keeps memory of gradients to approximate the inverse Hessian

o L-BFGS works alright with Gradient Descend. What about SGD?

o In practice SGD with some good momentum works just fine

Second order optimization methods in practice
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o Adagrad [Duchi2011]

o RMSprop

o Adam [Kingma2014]

Other per-parameter adaptive optimizations
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o Schedule

◦𝑚𝑗 = σ𝜏(𝛻𝜃ℒ𝑗)
2 ⟹ 𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡

𝛻𝜃ℒ

𝑚+𝜀

◦ 𝜀 is a small number to avoid division with 0

◦ Gradients become gradually smaller and smaller

Adagrad [Duchi2011]
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o Schedule

◦𝑚𝑗 = 𝛼σ𝜏=1
𝑡−1(𝛻𝜃

(𝑡)
ℒ𝑗)

2 + 1 − 𝛼 𝛻𝜃
(𝑡)
ℒ𝑗 ⟹

◦ 𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡
𝛻𝜃ℒ

𝑚+𝜀

o Moving average of the squared gradients
◦ Compared to Adagrad

o Large gradients, e.g. too “noisy” loss surface
◦ Updates are tamed

o Small gradients, e.g. stuck in flat loss surface ravine
◦ Updates become more aggressive

RMSprop

Square rooting boosts small values 
while suppresses large values

Decay hyper-parameter
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o One of the most popular learning algorithms

𝑚𝑗 =

𝜏

(𝛻𝜃ℒ𝑗)
2

𝜃(𝑡+0.5) = 𝛽1𝜃
(𝑡) + 1 − 𝛽1 𝛻𝜃ℒ

𝑣(𝑡+0.5) = 𝛽2𝑣
(𝑡) + 1 − 𝛽2 𝑚

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡
𝜃(𝑡+0.5)

𝑣(𝑡+0.5) + 𝜀

o Similar to RMSprop, but with momentum

o Recommended values: 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜀 = 10−8

Adam [Kingma2014]
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Visual overview

Picture credit: Alec Radford

https://twitter.com/alecrad
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o Learning to learn by gradient descent by gradient descent
◦ [Andrychowicz2016]

o 𝜃(𝑡+1) = 𝜃(𝑡) + 𝑔𝑡 𝛻𝜃ℒ, 𝜑

o 𝑔𝑡 is an “optimizer” with its own parameters 𝜑
◦ Implemented as a recurrent network

Learning –not computing– the gradients 
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Good practice

o Preprocess the data to at least have 0 mean

o Initialize weights based on activations functions
◦ For ReLU Xavier or HeICCV2015 initialization

o Always use ℓ2-regularization and dropout

o Use batch normalization
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Babysitting
Deep Nets

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods
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o Always check your gradients if not computed automatically

o Check that in the first round you get a random loss

o Check network with few samples
◦ Turn off regularization. You should predictably overfit and have a 0 loss

◦ Turn or regularization. The loss should increase

o Have a separate validation set
◦ Compare the curve between training and validation sets

◦ There should be a gap, but not too large

Babysitting Deep Nets
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Summary

o How to define our model and optimize it in practice

o Data preprocessing and normalization

o Optimization methods

o Regularizations

o Architectures and architectural hyper-parameters

o Learning rate

o Weight initializations

o Good practices



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 84

o http://www.deeplearningbook.org/
◦ Part II: Chapter 7, 8
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descent, arXiv, 2016
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[Kingma2014] Kingma, Ba. Adam: A Method for Stochastic Optimization, arXiv, 2014
[Srivastava2014] Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from 
Overfitting, JMLR, 2014
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Next lecture

o What are the Convolutional Neural Networks?

o Why are they important in Computer Vision?

o Differences from standard Neural Networks

o How to train a Convolutional Neural Network?


